Report

Conceptual Groundwater Model Report Levin Landfill, Hōkio Beach Road, Levin

Prepared for Horowhenua District Council

Prepared by Earthtech Consulting Limited

16 February 2023 Reference: R10009-2, Rev B

Document Control

Conceptual Groundwater Model Report

Levin Landfill, Hokio Beach Road, Levin

Client:	Horowhenua District Council
	Private Bag 4002, Levin 5540
Authors:	Mathilde Faraud, Graduate Hydrogeologist
	Philip Kelsey, Principal Hydrogeologist
	Lindsay Strachan, Senior Engineer, CMEngNZ, CPEng

Earthtech Consulting Limited 47 West Street, PO Box 721, Pukekohe 2340 +64 9 238 3669 admin@earthtech.co.nz www.earthtech.co.nz

Document Control					
Reference	Revision	Date	Status		
R10009-2	0	08/11/2023	For Client Review		
R10009-2	А	17/11/2023	Post Client Review		
R10009-2	В	16/02/2024	Final		

This report has been prepared solely for the benefit of you as our client with respect to the particular brief given to us. The data or opinions contained in it may not be used in other contexts or for any other purpose, person/s or entity without our prior review and written agreement.

This report provides a revision to a previous hydrogeological assessment (Earthtech, 2023) of the extent of the existing groundwater plume containing landfill leachate indicators emanating from the two unlined "Old Landfill¹" areas of the Levin Landfill site. Monitoring data has been used to describe the migration of solutes which have high relative mobility in groundwater. The following landfill leachate indicators in groundwater have been assessed – ammoniacal-nitrogen (ammoniacal-N), boron, chloride and electrical conductivity (EC) plus nickel.

There is much available data from some 30 years of monitoring the Levin site from the boreholes located across and to the north of the landfill property. The previous hydrogeological assessment has been revised with the results of the further groundwater investigations carried out in September 2023 for the detailed design of the remedial works. This report presents a revised conceptual groundwater model for numerical groundwater and transport modelling and remedial works design as part of the Best Practicable Option (BPO) plan.

Groundwater table levels associated with a shallow unconfined aquifer have been assessed and results show that they follow a northerly gradient with heads ranging from RL12.8*m* upgradient of Old Landfill Area 1 falling to RL5*m* at the Hōkio Stream. Between the unconfined and lower confined groundwater systems, a low permeability aquitard is present. Across the aquitard, a slight downward vertical gradient (downward groundwater flow) has been observed south of the landfill, and an upward gradient (upward groundwater flow) has been observed north of the landfill. Deep confined groundwater has shown artesian conditions at BH101C at the edge of Hōkio Beach Road.

Plan plots of the landfill leachate indicators show a broad 550m wide groundwater plume downgradient of Old Landfill Areas 1 and 2. The leachate indicator plumes extend from the landfill edge towards the Hōkio Stream. Stream water quality monitoring shows evidence that chloride and ammoniacal-N has reached the Hōkio Stream Elevated ammoniacal-N primarily occurs downgradient of Old Landfill Area 1. Associated cross-section plots show the highest ammoniacal-N concentrations within the upper half of the 14m thick shallow sand unconfined aquifer. Based on this distribution and the sensitivity of the Hōkio Stream to ammoniacal-N, 2D groundwater modelling with the consideration of shallow groundwater intercept drains with inverts below RL5m (level of Hōkio Stream) is recommended.

The recent increase of ammoniacal-N in the Hōkio Stream at downgradient sampling location HS2 at $2.7g/m^3$ (upgradient ammoniacal-N = $0.18g/m^3$) is considered to be due to the effects of the Old Landfill Area 1 ammoniacal-N groundwater plume discharging to the stream. Without the proposed groundwater remedial works, ammoniacal-N is expected to increase in surface water.

The downstream HS3 ammoniacal-N levels are within consented limits but are expected to rise in the future.

¹ Also referred to as the "Old Dump" of the Levin Landfill Site.

Contents

1.		Introduction1
2.		Background1
	2.1	Site Overview and Description1
	2.2	Historic Aerial Photographs2
3.		Detailed Field Investigations2
4.		Geology
	4.1	Revision of the Site Geology3
	4.2	Previous Investigations
5.		Groundwater6
	5.1	Groundwater Chemistry and Solute Flotherew Paths6
	5.2	Velocities8
	5.3	Permeability9
	5.4	Groundwater Levels
	5.5	Local Bores
6.		Groundwater and Surface Water Interaction11
	6.1	Groundwater and Surface Water Flows
	6.2	Groundwater and Surface Water Ammoniacal·N Concentrations 12
7.		Revised Conceptual Groundwater Model13
8.		Modelling Recommendations15
9.		References

Contents

Figures

Figure 1	Site Location Plan
Figure 2	Site Investigation Location Plan
Figure 3	Monitoring Points North of Old Landfill
Figure 4	HDC Groundwater and Surface Water Monitoring Data
Figure 5	Cross-Section A-A' with BHD3(r) Leachate Indicators
Figure 6.1	Cross-Section B-B' Groundwater Flow (July and September 2023)
Figure 6.2	Cross-Section B-B' with Leachate Indicators
Figure 7	Electrical Conductivity Plume – September 2023
Figure 8	Chloride Plume – September 2023
Figure 9	Boron Plume – September 2023
Figure 10	Ammoniacal-Nitrogen Plume – September 2023
Figure 11	Groundwater Table Contours
Figure 12	Tonkin and Taylor Cross-Section (TT, 2019)

Appendices

Appendix A	Site Investigation Logs and Detailed Observations
Appendix B	Water Quality Test Data
Appendix C	Permeability Test Analyses
Appendix D	Surface Water Ammoniacal-Nitrogen Plots
Appendix E	Historic Aerial Photographs 1939 - 2016

Conceptual Groundwater Model Report

Levin Landfill, Hokio Beach Road, Levin

1. Introduction

Earthtech Consulting Limited (Earthtech) has been appointed by the Horowhenua District Council (HDC) to carry out a hydrogeological assessment of the extent of an existing groundwater plume containing landfill leachate indicators (ammoniacal-nitrogen (ammoniacal-N), boron, chloride and electrical conductivity) emanating from the unlined "Old Landfill" areas of the Levin Landfill site. This assessment is aimed at identifying the migration of solutes that can be specifically linked to typical landfill leachate emissions, with the intent of mitigating these emissions through an overall remediation plan or Best Practicable Option (BPO) plan.

This assessment focuses on groundwater effects from the unlined Old Landfill Areas 1 and 2. Potential groundwater effects from the lined landfill area have not been considered.

A first hydrological assessment report has been completed in May 2023 (Earthtech, 2023). Subsequent field investigations were carried out in September 2023 and November 2023, and this report presents the assessment revision based on the new information.

Three reports are to be provided as follows:

- i) Conceptual Groundwater Model (this report)
- ii) Numerical Groundwater Flow and Contaminant Transport Modelling
- iii) Remedial Works Design

This report compiles all the site investigation and water quality testing data for the development of the conceptual groundwater model associated with the solute plumes downgradient of the two unlined landfill areas. The other two reports follow.

2. Background

2.1 Site Overview and Description

The Levin Landfill, located on Hōkio Beach Road, had operated for over 50 years until it closed in November 2021. Located on the property are, in effect, two general waste type landfills, i.e. an old closed landfill which is unlined (also referred to as the Old Landfill) and an engineered lined landfill

facility, lined to Class 1² standards. The Old Landfill, which closed in 2004, is an unlined landfill located on sand dunes, and comprises two areas separated by an access road, referred to as Areas 1 and 2, as shown in Figures 1 and 2. We understand that Area 2 was used largely for the disposal of wastewater sludges.

The site area of some 72ha is bounded by forest to the west, east and south and established vegetation and dense tree growth along the northern boundary. The site is situated on historical dune sands which overlie gravels at depth, as depicted in Figure 5. The Tatana property borders the site to the north, where the ground is flat with a series of constructed watercourses. Groundwater is close to the surface at approximately 0.5m to 1m below ground level across this northern area. A constructed drain, termed the Northern Farm Drain (previously referred to as "Tatana Drain"), runs along the northern boundary fence immediately outside the property, as shown in Figures 2 and 3. A swampy area has been identified south of the Tatana property, at the foot of the forest area, and immediately to the east of the landfill entrance. An established cleanfill-type landfill is located on the Tatana property. The Hōkio Stream is situated some 250m to the north of the Levin Landfill, flowing in a westerly direction to Hōkio Beach, out-letting to the sea.

2.2 Historic Aerial Photographs

Historic aerial photographs from 1939 to 2016 are presented in Appendix E. These photographs show the swamp area north of the Old Landfill areas to extend to the Tatana property between 1939 and 1957. From 1971, the land cover on the Tatana property appeared to have changed, and the swamp area only remained in the area north of the Old Landfill areas.

The 1939 to 1957 pre-landfill photographs show a low-lying swampy area under the central northern edge of the old unlined landfill area 1. This provides evidence that swampy ground was present within the Old Landfill footprint. It is not known if fill was placed within this area prior to refuse placement.

Cross section 5 (Figure 5) shows the base of the landfill below groundwater table levels within this area. Maximum ammoniacal-N plume levels (Figure 10) correlate to the low-lying swampy area described above.

3. Detailed Field Investigations

Field investigations were carried out from 4 to 8 September 2023 and 28 to 29 November 2023. The investigations were aimed at providing sufficient geological and hydrogeological information for the remedial works design, and to allow the assessment of the effectiveness of these works on mitigating water quality effects on the Hōkio Stream.

The investigations which are shown in Figure 3 are summarised as follows:

² For Class 1 type specification refer to WasteMINZ Technical Guidelines for Disposal to Land, Rev. 3, updated 2022.

- Six boreholes at four locations. Named BH101A,B,C, BH102, BH103, BH104. Groundwater level monitoring and permeability testing carried out in these bores.
- Twelve Cone Penetrometer Tests (CPT). Named CPT101 to CPT112.
- Six monitoring standpipes (two lines) installed in the shallow groundwater swampy area between BHB3 and BHC2 and named NM1 to NM6 (see Figure B).

The details of these investigations and associated logs are presented in Appendix A and a photograph of the drilling of BH101 is shown below (Figure A).

Figure A: Drilling of BH101, located north of the Tatana property, 3*m* setback south of Hokio Beach Road. Photograph from 6 September 2023.

Note that when the bores were developed, piezometer construction in BH102 and BH101B was found to be inadequate (broken screen and intake zones leaking formation sand). These bores were replaced on the 4th of November, 2023.

4. Geology

4.1 Revision of the Site Geology

Based on the new information provided by the September 2023 field investigations, the site geology has been revised.

The three different landforms on site (Figure 1) are as follows:

- Undulating sand dunes south of the stream flats and swampy ground from RL12*m* to RL40*m*.
- Dune terraces of RL9*m* to RL12*m* along the northeastern margins of the higher dune topography.
- Partially filled stream flats of RL6*m* to RL8*m* between the Northern Farm Drain and the Hōkio Stream.

A swampy area of approximately 1.4*ha* has been identified south of the Tatana property and north of the terrace dunes (Figure B). This area presents shallow groundwater discharging to the Northern

Farm Drain, and dead trees have been observed on aerial photographs and on site. Another swampy area is located immediately east of the landfill access road.

Figure B: Swampy area south of the Tatana property and north of the terrace dunes. The northern monitoring points (NM1 to NM6) are located in this swampy area and consist of open white standpipes. Photographs from 6 September 2023.

Two vertical cross-sections of the site (Figures 5 and 6.1) have been constructed. Figure 5 with crosssection (A-A') shows the site from south of the old unlined landfill (BHD3rd) to the Northern Farm Drain and Hōkio Stream up north (BHXS1). Figure 6.1, with cross-section (B-B') focusing on the north of the site, has also been constructed from BH103 through the swampy grounds and Tatana property, up to BH101 and Hōkio Stream. Both cross-sections are based on the information from the driller's logs provided by Stantec and the Earthtech logs from the new monitoring bores drilled in September 2023.

The geology from the deepest new monitoring bore log (BH101C) consists of:

- Sand from ground level to RL-8.2*m*.
- Sandy clay from RL-8.2 to RL-9.7*m*.
- Silty gravel underneath the sandy clay formation.

The hydrogeological interpretation is as follows:

- Shallow unconfined aquifer within the sand formation of about 14*m* thickness.
- Separating aquitard consisting of a 1.5*m* thick clay layer (identified in BH101C).
- Deep confined aquifer within the silty gravel and gravel underneath the aquitard.

The unconfined aquifer has groundwater levels between RL12.8m to RL5.8m, with a flow direction towards the north to discharge to the Northern Farm Drain and Hōkio Stream (which is at about RL5m). Groundwater level from the deep aquifer bore BH101C showed a flowing artesian head of

0.7m above ground level approximately 16hrs after drilling, indicating an upward gradient at this location.

Six boreholes on site describe the gravel layer of the deep aquifer:

- BHE1d (drilled September 1997)
- BHE2d (drilled September 1997)
- BHC2DD (drilled September 1997)
- BHG1D (drilled September 2009)
- BH101C (drilled September 2023)
- BHD3rd (drilled June 2021)

The gravel aquifer depths observed in these boreholes are presented in Table 1 below:

Borehole	Elevation	Depth	Gravel layer depth		
	m RL	m bgl	mRL		
BH101C	6.8	20.0	-9.7		
BHE1d	20.9	37.8	-12.1		
BHE2d	13.15	28.7	-11.6		
BHC2Dd	10.1	18.9	-7.4		
BHG1d	24.0	31.5	-7.5		
BHD3rd	18.0	32.0	-5.3		

 Table 1: Deep gravel aquifer boreholes and gravel layer depths encountered

The above-level data has been used to define the base of the aquitard in Figures 5 and 6.1.

4.2 Previous Investigations

A previous geological assessment of the Levin Landfill was prepared in September 2019 by Tonkin and Taylor. Their work provided a vertical cross-section from the south through Area 1 of the landfill and to the Hōkio Stream up north (Tonkin and Taylor, 2019). This figure (Figure 12) presented onsite geology as follows:

- Recent dune sands from RL0*m* up to RL30*m*.
- Silts and clay for a 2*m* thick layer from approximately RL0*m* to RL-2*m*.
- Gravels from RL-2*m* to RL-10*m*.

The associated Tonkin and Taylor (2019) hydrogeology interpretation describes a shallow unconfined aquifer within the dune sand formation, 10m to 5m thick near the Hōkio Stream, and a deep confined aquifer within the deeper gravel layer underneath. The aquifers are described as being separated by the 2m thick aquitard. The shallow unconfined aquifer has a groundwater table which generally

follows the ground surface with a horizontal gradient towards the Northern Farm Drain and Hōkio Stream. The deep confined aquifer is reported as being artesian.

5. Groundwater

5.1 Groundwater Chemistry and Solute Flow Paths

The location of all the monitoring bores on the site, upgradient and downgradient of the different landfill areas, are presented in Figure 2.

Electrical conductivity plus three solutes are used as early leachate indicators (due to high relative mobility in groundwater) as follows:

- Electrical Conductivity (EC) in *mS/m*
- Chloride (Cl) in g/m^3
- Boron (B) in g/m^3
- Ammoniacal-Nitrogen (NH₄N) in g/m^3

Figure 4 presents the concentration values for these four solutes in July and October 2023 in the main observation bores. This has allowed us to assess the flow path of their concentration plume with time and their up-to-date location in the area.

Figure 4 shows the majority of bores immediately south and upgradient of the unlined landfill areas to have near background groundwater concentrations of:

- Electrical Conductivity (EC) at < 54*mS/m*
- Chloride (Cl) at $16g/m^3$ to $39g/m^3$
- Boron (B) at $< 0.07 g/m^3$
- Ammoniacal-Nitrogen (NH₄N) at $0.01g/m^3$ to $0.7g/m^3$

The concentration contour lines for July and October 2023 monitoring data are presented in Figures 7 to 10.

From the water quality data and these maps, the following observations have been made:

- EC highest concentration in July-September 2023 is 362*mS/m* in NM3 (Figure 7), on the southern margin of the swampy area. This is higher than the 284*mS/m* maximum observed in January 2023 in BHC2.
- EC concentration plume has an elongated shape and the 200*mS/m* contour line captures an area downgradient of both Areas 1 and 2 of the Old Landfill.
- The total width of the EC plume at >100mS/m is about 550m wide.

- Upgradient and downgradient Hōkio Stream September EC data (Figure 7) does not show a significant discharge influence from the EC plume.
- Chloride highest concentration for July-September 2023 is 380g/m³ in BHB1 (585g/m³ in BHG2 in January 2023). The chloride data from 1994 to 2023 shows some variability over time, varying between 100g/m³ and 700g/m³ from July 2014 to July 2023 in BHG2, for example. The BHG2 variability is considered to be due to dilution from focussed rainfall recharge into the area of swampy ground adjacent to the landfill entrance.
- The highest chloride concentrations (over 300g/m³) are located downgradient of Area 2 of the Old Landfill. The 200g/m³ contour line captures the area downgradient of both Areas 1 and 2 of the Old Landfill.
- The total width of the chloride plume at $>100g/m^3$ is about 500m wide.
- Upgradient and downgradient Hōkio Stream September chloride data (Figure 8) does not show a significant discharge influence from the chloride plume. There is some evidence of a local plume discharge effect at HS1 located downgradient of the area of peak plume concentrations.
- Boron highest concentration for July-September 2023 is $2.53g/m^3$ in BHB2. The maximum value in January 2023 was also similar at $2.2g/m^3$ in BHB2.
- Boron concentration plume is located downgradient of both Areas 1 and 2 of the Old Landfill, and the contour lines show that elevated concentrations of boron are still discharging from both Old Landfill areas.
- The total width of the boron plume at $>0.5g/m^3$ is about 500m wide.
- Upgradient and downgradient Hōkio Stream September boron data (Figure 9) does not show a significant discharge influence from the boron plume.
- The ammoniacal-N highest concentration in July-September 2023 is $210g/m^3$ in NM3 $(170g/m^3$ in BHC2 in January 2023). Ammoniacal-N values between January and July-October 2023 appear stable with no significant variability between summer and winter monitoring.
- Ammoniacal-N concentration plume is mostly located downgradient of Area 1 of the Old Landfill and the most recent data shows that the $150g/m^3$ plume is still currently discharging from this area of the Old Landfill. The peak concentration plume matches the EC data, in the NM3 C2 vicinity.
- The total width of the ammoniacal-N plume at $>10g/m^3$ is about 370*m* wide.

• Hōkio Stream September ammoniacal-N data (Figure 10) shows a significant discharge influence from the ammoniacal-N plume with values of $0.18g/m^3$ to $2.7g/m^3$ from upgradient and downgradient monitoring, respectively.

From this assessment, NM3 and boreholes BH103 and BHC2 show the highest concentration of ammoniacal-N centrally located downgradient of Old Landfill Area 1. Cross-section B-B' (Figure 6.2) is, therefore, located through a high concentration zone associated with the plume. The Figure C time history plot for BHC2 shows the emergence of elevated ammoniacal-N in 2005 and an overall increasing trend to 2023.

Figure 6.2 shows that elevated leachate indicators, specifically ammoniacal-N, is generally restricted to the upper half of the shallow unconfined aquifer.

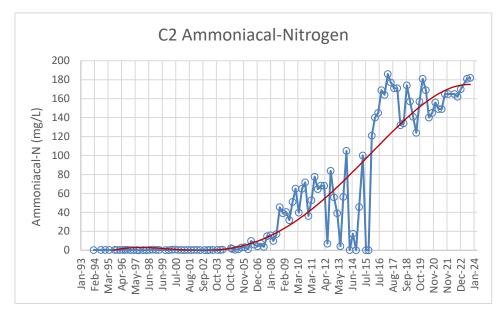


Figure C: Ammoniacal-N concentration over time in the groundwater monitoring borehole BHC2

5.2 Velocities

For EC and the three solutes, their masses will travel within the groundwater, following groundwater flow from the south to the north through the area. The four leachate indicators are expected to have different behaviours in terms of travel time, as all chemical components have different retardation factors. Chloride usually travels faster than boron and ammoniacal-N; therefore, its concentration plume is expected to be located further north than the other solute plumes.

The peak concentrations of each solute have been studied over time, which allowed the estimation of groundwater velocities of the four leachate indicators, as presented in Table 2. An estimation of the time needed for the peak concentrations of the solutes in groundwater to reach Hōkio Stream has been calculated as shown in Figure D below.

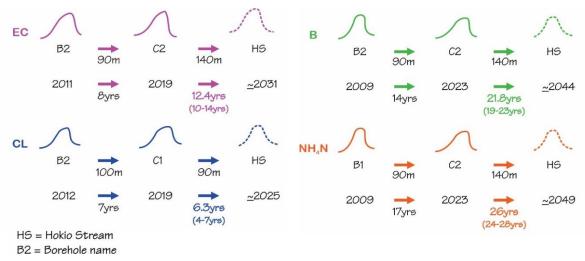


Figure D: Concentration plume peaks travel time

Table 2: Leachate indicator velocities in groundwater

Solute	Electrical Conductivity	Chloride	Boron	Ammoniacal-N		
Velocity (m/yr)	11.3	14.3	6.4	5.3		

Chloride presents the fastest velocity, as this solute generally represents advective flow. It is followed by boron and then ammoniacal-N.

5.3 Permeability

The monitoring boreholes drilled in September 2023 (BH101A, B, BH102, BH103, BH104) and BH101B and BH102 redrilled in November 2023 have been developed, and permeability testing carried out. Rising head slug testing has been carried out, and the results have been analysed with the Bouwer-Rice method (Bouwer, 1989) using AQTESOLV to determine the permeabilities. The site's detailed investigations are presented in Appendix A, and the permeability analysis plots are presented in Appendix C. Test results are shown in Table 3 below.

Table 3: New monitoring bore permeabilities

Borehole	BH101A	BH101B new	BH102 new	BH103	BH104
Horizontal Permeability (m/d)	3.21	1.84	0.85	4.40	1.63

These hydraulic conductivity values give the following arithmetic mean for the site area:

• Site Permeability = 2.39m/d

Other permeability values obtained for the area are discussed below.

Permeability testing carried out in July 2012 has been provided. Test results present a large range of permeability values, ranging from 0.59m/d to 498m/d. This range includes high 100m/d to 500m/d permeability conditions outside of that expected for sands; therefore, this test data has low reliability and has been disregarded.

Permeability values from the Tonkin and Taylor assessment included a range of $2e^{-5}$ to $6e^{-5}m/s$ (1.7 to 5.2m/d) for the shallow sand aquifer, with a value of $1.0e^{-5}m/s$ (0.9m/d) adopted for their assessment (Tonkin and Taylor, 2019).

Field permeabilities (k_h) have also been back-analysed previously by Earthtech (2023) for chloride using its observed velocity of 14.3*m*/yr (Table 3). The method of calculation provided an estimated sand aquifer permeability of 0.39*m*/*d*.

Figure 6.2 shows a significant reduction in leachate indicator parameters with depth. This could be due to permeability anisotropy within the shallow sand aquifer where vertical permeability is lower than horizontal permeability.

On the basis of the above assessment, a horizontal permeability of 2.39m/d has been adopted for the unconfined sand aquifer³. The on-site test data presented in Table 3 provides reproducible results within a reasonably narrow test range for the uniform sands identified in both the cored boreholes and CPT probes for the plume area. The horizontal permeability of 2.39m/d is considered to be more reliable than the 0.4m/d permeability calculated using solute velocities. The 2.39m/d is equivalent to $2.77e^{-5}m/s$, representing moderate permeability mid-range values for clean sand (Freeze and Cherry, 1979).

5.4 Groundwater Levels

Groundwater table levels for July-September data are presented in Figure 11. Groundwater levels for various depths are shown in Figures 5 and 6.1. These groundwater levels show the following:

- i. Groundwater table levels with northerly gradient with heads ranging from RL12.8*m* upgradient of Old Landfill Area 1 falling to RL5*m* associated with Hōkio Stream. These groundwater levels show northerly flow is dominant with discharge to the Hōkio Stream. Figure 11 shows deflection of the RL8*m* contour caused by local discharge to the swampy ground and Northern Farm Drains. The overall horizontal hydraulic gradient for the flats area is 0.01.
- Upgradient of the landfill, there is a slight downward vertical gradient between the unconfined and confined aquifer (see BH03 levels in Figure 5). Downgradient of the landfill, across the stream flats, there is an upward flow between the confined and unconfined systems. At BH101, deep confined groundwater is flowing artesian.
- iii. Upward groundwater flow between the deep confined and shallow unconfined aquifers, combined with the presence of the aquitard, prevents landfill discharge effects on deep confined

³ Permeability is used as an equivalent for Hydraulic Conductivity.

groundwater. This is supported by deep groundwater quality monitoring for the site and specifically BH101C leachate indicators which are at background conditions.

- A comparison of groundwater levels from January 2023 (Figure 12 from Earthtech (2023)) and July-September (Figure 12) shows little seasonal change. This lack of seasonal variability is considered to be due to:
 - Elevated January 2023 levels from high summer rainfall conditions.
 - Groundwater drainage controls associated with swampy ground, Northern Farm Drain and Hōkio Stream.

5.5 Local Bores

A review of the Horizons bore database was carried out on 31 October 2023. No water supply bores are shown to be present in the immediate vicinity of the leachate indicator plumes.

6. Groundwater and Surface Water Interaction

The upper unconfined aquifer discharges to the Hōkio Stream, which runs from east to west to the north of the site. Four surface monitoring points are located at the Hōkio Stream: HS2 and HS3 which are downstream, plus HS1 and HS1A which are upstream. Associated surface water quality data from February 1994 to February 2023 has been reviewed.

A specific effects assessment on the Hōkio Stream will be carried out following the contaminant transport modelling.

6.1 Groundwater and Surface Water Flows

For this assessment, we focused on ammoniacal-N concentrations, as this parameter is the most critical. Groundwater flow has been calculated with Darcy equations as follows:

- Darcy equation: Q = K * A * i
- K = 2.39m/d Aquifer Permeability (Section 5.3)
- i = 0.01 Hydraulic gradient (From Cross section AA')
- $A = 5,180m^2$ Area for a 14*m* thick aquifer and a 370*m* wide section (corresponding to the estimated width of the concentration plume for ammoniacal-N > $10g/m^3$ from Figure 10).
- Groundwater flow: $Q = 124m^3/d$

From Horizons online environmental data, a hydrograph of Hōkio Stream level over the last 12 months at its source, the Punahau (Lake Horowhenua) weir, has been observed (Figure E). It shows

general low flow conditions occurring from December 2022 to April 2023, and general high flow conditions occurring between May 2023 and September 2023.

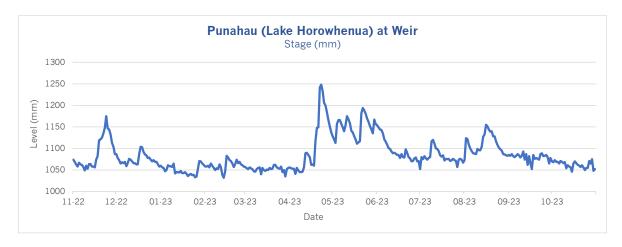


Figure E: Hydrograph of the weir at Punahau (Lake Horowhenua) Horizons Regional Council Environmental data

The surface flow in the Hōkio Stream is described in the Horizons Council publication (NIWA, 2011) as ranging between $0.3m^3/s$ and $2m^3/s$.

6.2 Groundwater and Surface Water Ammoniacal-N Concentrations

Based on the October 2023 ammoniacal-nitrogen contour map (Figure 10), the average groundwater concentration is estimated to be $<10g/m^3$ at Hōkio Stream for October 2023. A value of $0.7g/m^3$ is assumed to be the ammoniacal-N groundwater background level, outside of the concentration plume.

The following ammoniacal-N concentrations were measured in the surface water monitoring sites of the Hōkio Stream:

•	In HS1A:	$0.09g/m^3$ $0.25g/m^3$	Average October 2021 – October 2023 Maximum value for May 2022 (occurring in January 2023)
•	In HS2:	$0.4g/m^{3}$	Average October 2021 – October 2023
		$2.71g/m^3$	Maximum value for September 2023
•	In HS3:	$0.17g/m^3$ $0.39g/m^3$	Average October 2021 – October 2023 (below HS3 consented limit of $0.4g/m^3$) Maximum value for October 2023 (below HS3 consented limit of $2.1g/m^3$)

Additionally, the following ammoniacal-N levels have been measured in the Hōkio Stream up and downgradient of the Figure 10 plume during 2023 (these values are presented in Appendix D). High

values of ammoniacal-N occurred in 2023 in the downgradient monitoring site HS2, as shown in Table 4.

	Ammoniacal-N Concentration						
	Upgradient s monitori			surface water ing point			
	HS1A	HS1	HS2	HS3			
	(g/m³)	(g/m³)	(g/m ³)	(g/m³)			
Nov-22	0.16	0.17	1.37	0.24			
Dec-22	0.09	0.02	0.17	0.18			
Jan-23	0.18	0.23	1.38	0.29			
Feb-23	0.02	0.04	1.23	0.14			
May-23	0.08	0.11	0.14	0.13			
June-23	0.06	0.07	0.08	0.13			
July-23	0.05	0.06	0.1	0.14			
Sept-23	0.17	0.18	2.71	0.37			
Oct-23	0.09	0.08	0.19	0.39			

Table 4: Ammoniacal-N concentration in surface monitoring points for late 2022 and 2023

Data from May to July 2023 from Stantec (2023).

Table 4 shows the groundwater plume affecting the Hōkio Stream with increases in ammoniacal-N between the upgradient and downgradient surface water sampling locations. Typically, the current increase in ammoniacal-N is from $0.1g/m^3$ to $1.4g/m^3$. Higher increases occurred in November 2022, plus January and February 2023. In September 2023, an increase of ammoniacal-N from $0.17g/m^3$ to $2.7g/m^3$ occurred.

The consented ammoniacal-N trigger limits in surface water are $2.1g/m^3$ maximum and $0.4g/m^3$ average at HS3. The monitoring record shows compliance in terms of these trigger levels at HS3. There are no trigger limits at HS2.

Without mitigation, the ammoniacal-N concentrations in the Hōkio Stream are expected to increase in the future as the associated groundwater plume migrates north. The HS3 ammoniacal-N concentrations are expected to rise towards consented limits.

7. Revised Conceptual Groundwater Model

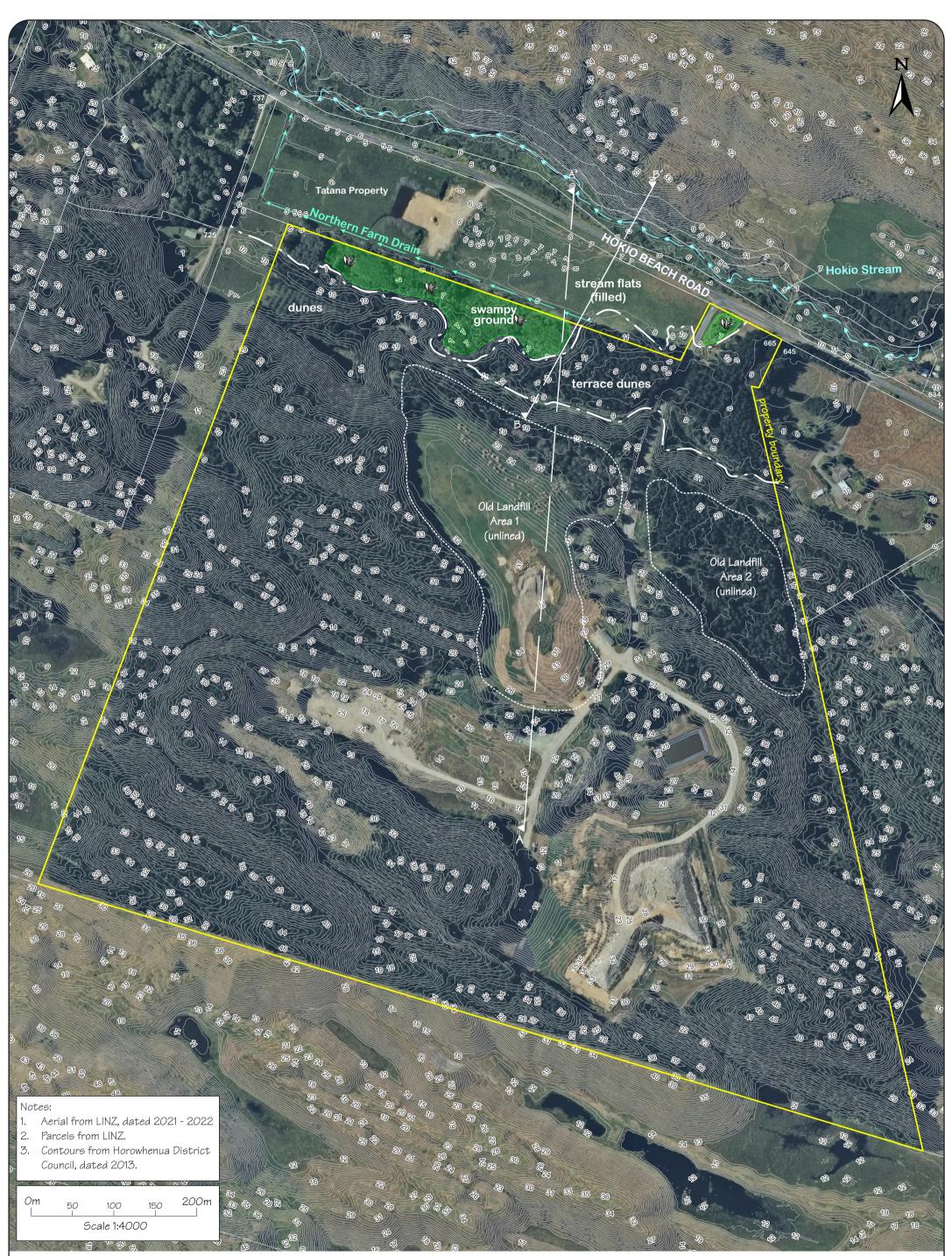
The revised conceptual groundwater model is summarised as follows:

- i. Refuse and other waste was originally placed within two unlined landfill areas located within sand dunes.
- ii. The base of both unlined landfills is in close proximity to groundwater.

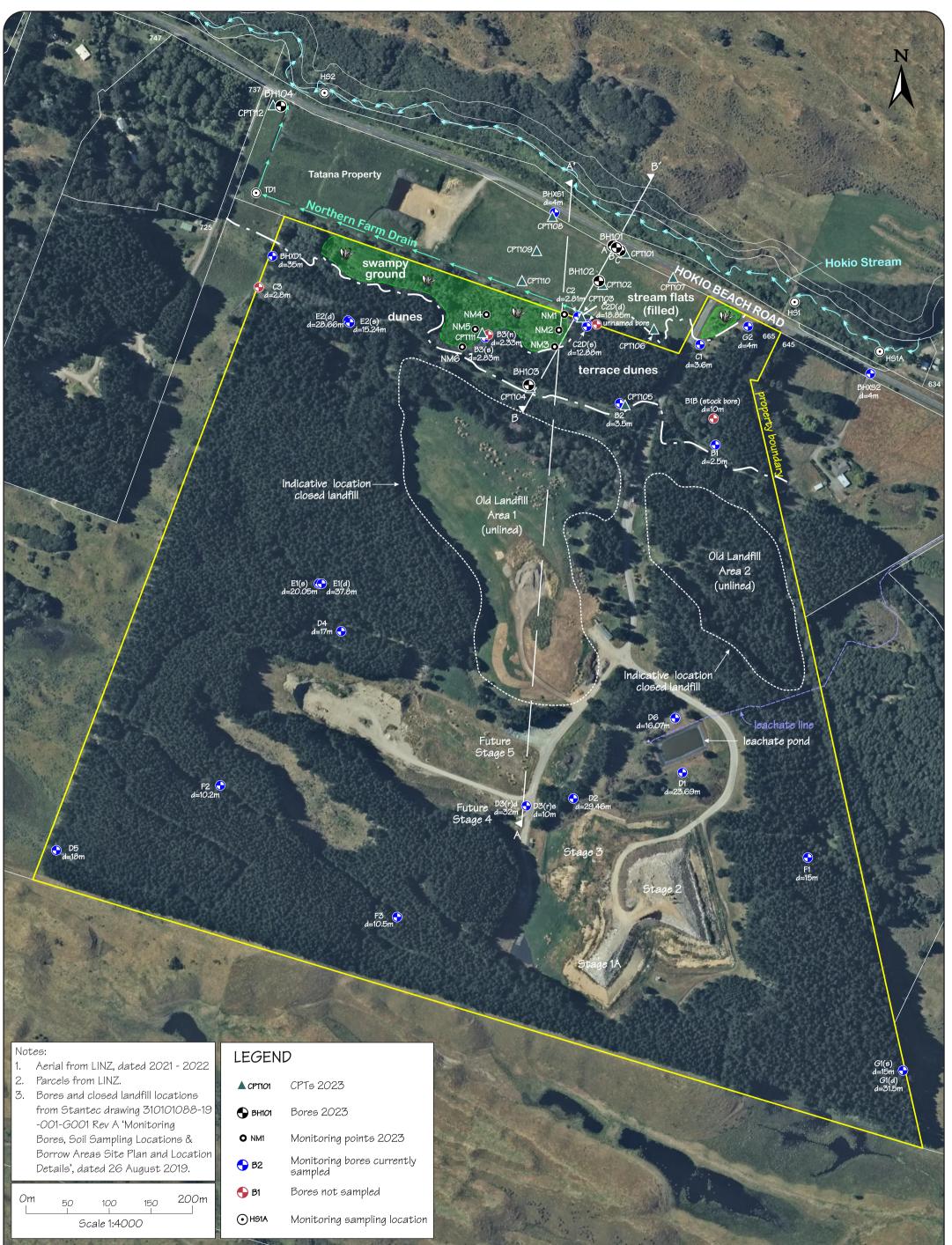
- iii. Groundwater investigations have defined the following conditions:
 - Shallow unconfined aquifer of 13*m* to 17*m* saturated thickness within dune sands.
 - Separating aquitard consisting of a 1*m* to 2*m* thick clay layer.
 - Underlying deep confined gravel aquifer.
- iv. The unconfined aquifer has moderate permeability assessed at 2.39m/d from field testing and flows to the north.
- v. Groundwater table levels follow a northerly gradient with heads ranging from RL12.8*m* upgradient of Old Landfill Area 1 falling to RL5*m* associated with the Hōkio Stream. Between the confined and unconfined systems, a slight downward vertical gradient has been observed upgradient of the landfill, and an upward flow has been observed downgradient of the landfill. Deep confined groundwater has shown artesian conditions at BH101.
- vi. Based on a review of the Horizons bore database, no water supply bores are shown to be present in the immediate vicinity of the leachate indicator plumes.
- vii. Landfill leachate discharge to ground has resulted in leachate indicator groundwater plumes for EC, ammoniacal-N, chloride and boron associated with the unconfined aquifer. The plumes have differing chemistry due to the different landfill sources associated with Old Landfill Areas 1 and 2.
- viii. Leachate indicator plumes range in width between 370*m* and 550*m*. Downgradient, the plumes extend across the Tatana property with chloride and ammoniacal-N reaching the Hōkio Stream.
- ix. Nested piezometers show that elevated leachate indicators, and specifically ammoniacal-N, are generally restricted to the upper half of the shallow unconfined aquifer downgradient of the unlined landfills. This distribution is considered to be due to aquifer anisotropy ($k_v << k_h$).
- x. Hōkio Stream monitoring shows that surface water is being affected by the ammoniacal-N plume with HS2 downstream average and peak values of $0.4g/m^3 2.71g/m^3$ respectively. The downstream HS3 ammoniacal-N levels are within consented limits.
- xi. Peak plume concentrations have not yet reached the Hōkio Stream, and there is a potential that without mitigation, ammoniacal-N levels will continue to increase.

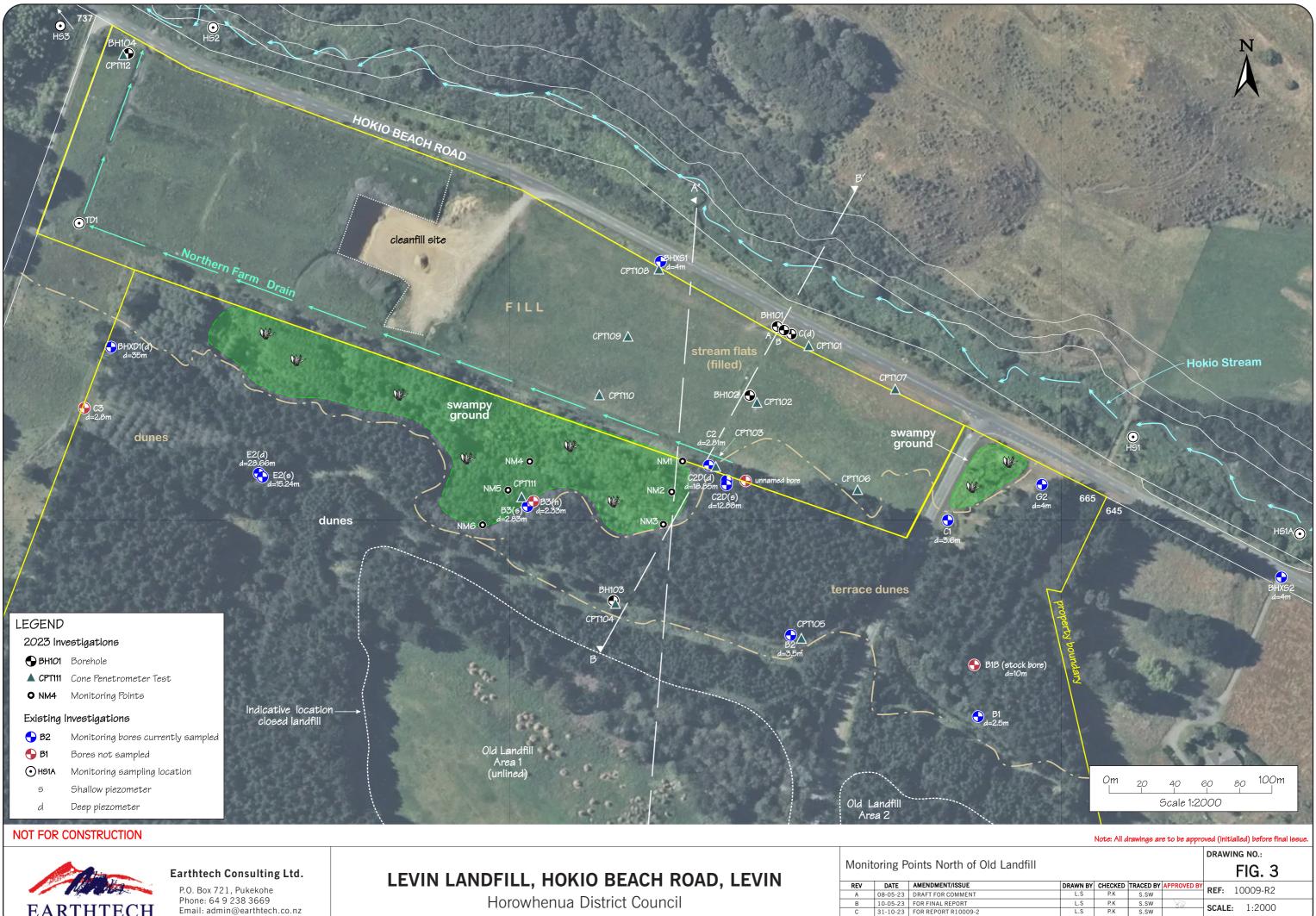
8. Modelling Recommendations

Based on the distribution of the critical ammoniacal-N within the upper half of the unconfined aquifer, 2D groundwater modelling with consideration of shallow groundwater intercept drains with inverts below RL5*m* (level of Hōkio Stream) is recommended.


A calibrated flow model should initially be constructed followed by contaminant transport modelling. Calibration of the transport model should also be carried out with the plotted plume maps for chloride and ammoniacal-N.

9. References


Bouwer, H. (1989)	The Bouwer and Rice slug test - an update. Ground Water, vol. 27, no. 3, pp. 304-309.
Earthtech (2023)	Assessment of Groundwater Pollution Plume Mobility and Remediation Plan – Levin Landfill, Hōkio Beach Road, Levin. Dated 31 May 2023, R10009-1 Rev.A.
Freeze, R.A., Cherry, J.A. (1979)	Groundwater. Prentice-Hall, New Jersey.
Horizons Regional Council (2022)	Annual Compliance Audit Report Horowhenua District Council Levin Landfill, Reporting Period July 2021 – June 2022, December 2022.
NIWA (2011)	Lake Horowhenua Review – Assessment of opportunities to address water quality issues in Lake Horowhenua. Prepared for Horizons Regional Council. Retrieved from <u>All Publications - Horizons Regional Council.</u>
Stantec (2022)	Levin Landfill Annual Compliance Report July 2021 – June 2022 (as required by Resource Consents DP6009, DP6010, DP6011 and DP102259), prepared for Horowhenua District Council, September 2022.
Stantec (2023)	Levin Landfill July 2023 Quarterly Groundwater, Surface Water and Leachate Monitoring Report, prepared for Horowhenua District Council, August 2023.
Tonkin and Taylor (2019)	Levin Landfill – Summary of leachate option assessment. (Ref 1011583).


Note: All drawings are to be approved (initialled) before final issue

Earthtech Consulting Ltd.	LEVIN LANDFILL	Site Lo	cation F	Plan					DRAWING NO.: FIG. 1	
P.O. Box 721, Pukekohe	HOKIO BEACH ROAD, LEVIN	REV	DATE	AMENDMENT/ISSUE	DRAWN BY	CHECKED		APPROVED BY	REF: 10009-R2	Τ
Phone: 64 9 238 3669	Hollio BEAGH ROAD, EEVIN	A	08-05-23	DRAFT FOR COMMENT	L.S	L.S	S.SW			-
EARTHTECH Email: admin@earthtech.co.nz	Horowhenua District Council	В		FOR FINAL REPORT R10009-1	L.S	L.S	S.SW	8A	SCALE: 1:4000	
		С	31-10-23	FOR REPORT R10009-2	L.S	L.S	S.SW		CRS: NZTM	7
									DATUM:	1

Note: All drawings are to be approved (initialled) before final issue

	E	arthtech Consulting Ltd.	LEVIN LANDFILL	Site Ir	vestigati	on Location Plan					DRAWING NO.: FIG. 2	
	U.S. CARRON	P.O. Box 721, Pukekohe	HOKIO BEACH ROAD, LEVIN	REV	DATE	AMENDMENT/ISSUE	DRAWN BY	CHECKED	TRACED BY	APPROVED BY	REF: 10009-R2	1
		Phone: 64 9 238 3669	HORIO DEACH ROAD, LEVIN	A	08-05-23	DRAFT FOR COMMENT	L.S	L.S	S.SW			4
	EARTHTECH	Email: admin@earthtech.co.nz	Horowhenua District Council	В	10-05-23	FOR FINAL REPORT R10009-1	L.S	L.S	S.SW	84	SCALE: 1:4000	
'				С	31-10-23	FOR REPORT R10009-2	L.S	P.K	S.SW		CRS: NZTM	1
										1 1	DATUM:	

P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

10-05-23 FOR FINAL REPORT В 31-10-23 FOR REPORT R10009

P.K

S.SW

CRS: DATUN

NZTM

Horowhenua District Council

		. 1	
	Image: Hokio stream Continuu Image: Hokio stream Continuu HS3 Image: Hokio stream September 2023 25.4 Image: Hokio stream 0.06 Image: Hokio stream 0.4 Image: Hokio stream	HS2 27.6 BH104 26 0.07 2.7 TD1 TATANA DRAIN Northern Farm Drain Swampy ground NM4.0	2023 September 2.2 37 1.4 BH101 BHXS1 HOKIO STREAM BHXS1 HOKIO BEACH ROAD C2 Stream flats July 2023 BH102 C2 Stream flats July 2023 BH102 BHXS1 C2D(6) July 2023 BH102 July 2023 BH102 July 2023 BH102 July 2023 BHC2 July 2023 July 2023 BH2200 Stream flats July 2023 Stream flats
ORIGINALSIZE A1 [10 10 20 30 40 50 60 70 80 90 90 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1	EORE LOCATIONS AND DETAILS BRE HOLE NO NORTHING EASTING Rin OPPTH PIEZOMETER FUNCTION A1 699 60.15 276 944.89 12.35 In SHALLOW ADU A2 (DESTROYED) 699 60.15 276 944.89 12.35 IN SHALLOW ADU A3 (DESTROYED) 699 50.47 278 934.72 10.10 IN SHALLOW ADU B1 699 50.47 278 934.72 17.6 2.83 50 SHALLOW ADU B1 699 50.47 278 934.72 7.76 2.83 50 SHALLOW ADU B2 699 50.97 278 934.72 7.76 2.83 50 SHALLOW ADU B3(n) 699 61.97 276 84.28 7.76 2.84 20 SHALLOW ADU C2D(0) 699 71.97 276 44.28 7.76 2.84 20 SHALLOW ADU C2D(0) 699 71.97 276 42.26 2.05 1.84 2.05 SHALLOW ADU C2D(0) 699 71.97 276 42.26 7.76	PHC3 PHC3	NM3 O July 2023 July 2023 3 terrace 53.6 0.07 July 2023 9 0.07 11.4 BHB 19 (0.D. 233 177 11.4 BHB 1 July 2023 11.4 2333 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4
26/08/2019 9:35 a.m.	E FOR INFORMATION - BHD3(r)s AND BHD3(r)d ADDED, AND CONTOURS UPDATED FROM JULY 2021 SURVEY D FOR INFORMATION - BORROW AREA 2 RELOCATED, DEFINED AREAS OF FUTURE STAGES 1B, 4 AND 5 C FOR INFORMATION - BORROW AREA AND LANDFILL AREA UPDATES AND BORE HOLES AND SAMPLING LOCATION HOKIO STREAM AND TATANA DRAIN B FOR INFORMATION - BORROW AREA AND LANDFILL AREA UPDATES A FOR INFORMATION - BORROW AREA AND LANDFILL AREA UPDATES REVISIONS PROVENCE	BCJ PSL 24.03.21 APPROVED Phil Landmark 23.09.21 BCJ PSL PSL 22.09.20 APPROVED Phil Landmark 23.09.21 BCJ PSL PSL PSL PSL PSL PSL DRN CHK APP DATE PROF REGISTRATION: PROF	Stantec Image: Control of the system of

\sim		
	JP	>
Ľ	2	

¢	_		
_	-	_	_

SOIL	CO-ORE	LEVEL	
MONITORING LOCATIONS	NORTHING mN	EASTING mE	(m)
PEG A	658 938.80	276 882.30	39.2
PEG B	658 917.00	276 932.10	39.5
PEG C	658 862.70	276 899.00	46.1
PEG D	658 822.90	276 930.40	40.4
PEG E	658 965.50	276 294.00	36.6
PEG F	659 046.20	276 169.10	32.9
PEG G	658 878.00	276 520.20	32.6
PEG H	658 827.40	276 667.60	23.5

COORDINA	TES OF SUR	VEY CONTR	OL MARKS	
PT	NORTHING mN	EASTING mE	RL	
ORM 1	659 498.38	276 412.21	38.94	
ORM 2	659 510.09	276 422.72	34.98	
ORM 3	659 505.14	276 612.86	21.10	
ORM 4(OP/W)	659 380.16	276 511.94	30.92	
MWH NAIL 1	659 272.67	276 656.87	27.61	
MWH NAIL 2	659 278.98	276 695.22	28.40	
MWH IT 1	659 267.33	276 576.02	30.03	
MWH IT 2	659 361.94	276 627.00	33.70	
MWH IT 3	659 428.24	276 593.00	32.74	
MWH PEG 1	659 160.94	276 548.30	32.99	
MWH PEG 2	659 227.86	276 479.35	30.49	
IRII	659 075.85	276 698.70	30.04	
OIR	658 903.62	276 579.37	30.35	
IRI	659 121.09	276 679.47	40.00	
IR	276 625.10	658 981.29	21.30	
COORDINATES ARE IN TERMS OF				

BORROW AREA 1 SET-OUT COORDINATES POINT NO. NORTHINGS mN EASTINGS mE 659 230.38 276 453.28 659 247.32 276 413.49 659 257.33 276 349.62 3 4 659 280.93 276 269.42 5 659 233.27 276 243.39 6 659 201.34 276 302.68

- NOTES: 1. LEVELS ARE TOP OF STANDPIPE. WHERE THERE IS NO STANDPIPE, LEVELS ARE TOP OF PVC PIPE.
- BHA2, BHA3 AND BHD3 HAVE BEEN LOST DUE TO 2. SITE WORKS.
- 3. "A" SERIES BORE HOLES ARE AUGER HOLES
- ONLY AND MAY NOT BE ABLE TO BE LOCATED. 4. BORES INSTALLED IN AUG 2009. DETAILS ARE
- APPROXIMATE.
- 5. CONTOUR INTERVALS: 5m MAJOR, 1m MINOR

LEGEND

Leachate Indicators July to October 2023

EC	
CL	
В	
NH₄N	

Electrical Conductivity (mS/m) Chloride (g/m³) Boron (g/m³) Ammoniacal-Nitrogen (g/m³)

FIGURE 4

HDC Groundwater and Surface Water Monitoring Data

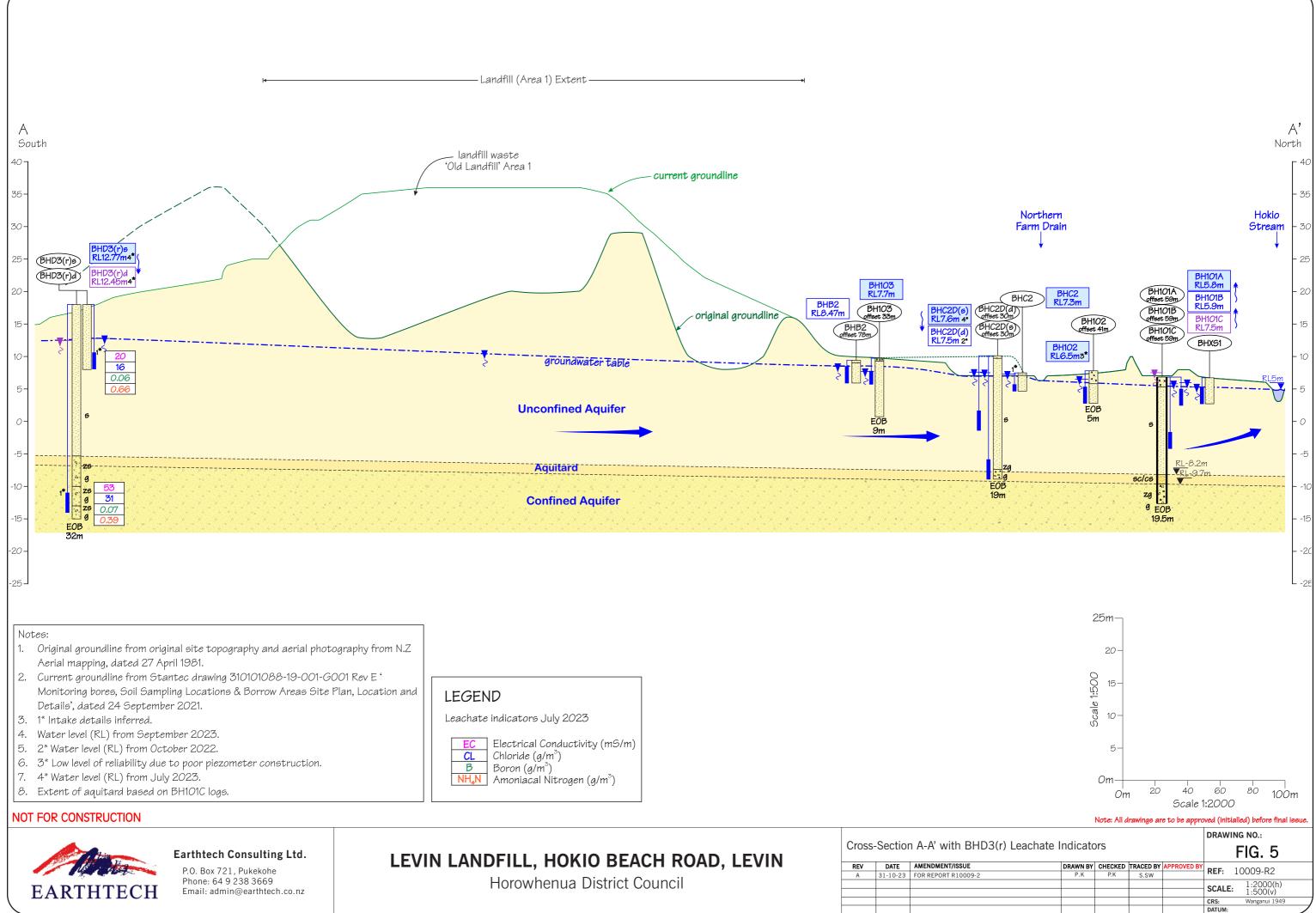
Ref: R10009-2 dated 31/10/23

Project: LEVIN LANDFILL HOKIO BEACH ROAD, LEVIN Horowhenua District Council

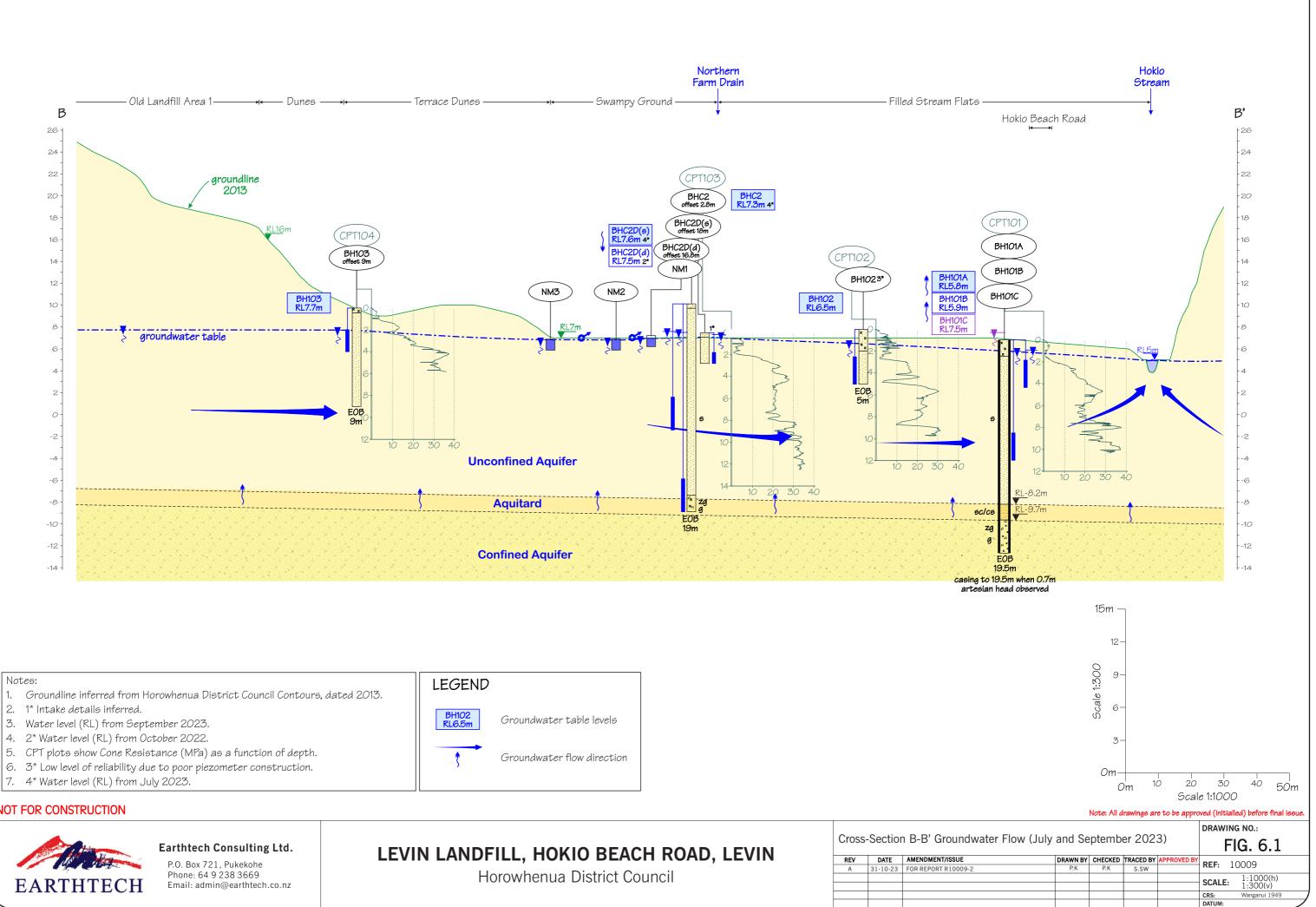
Earthtech Consulting Ltd. EARTHTECH P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

24.09.21

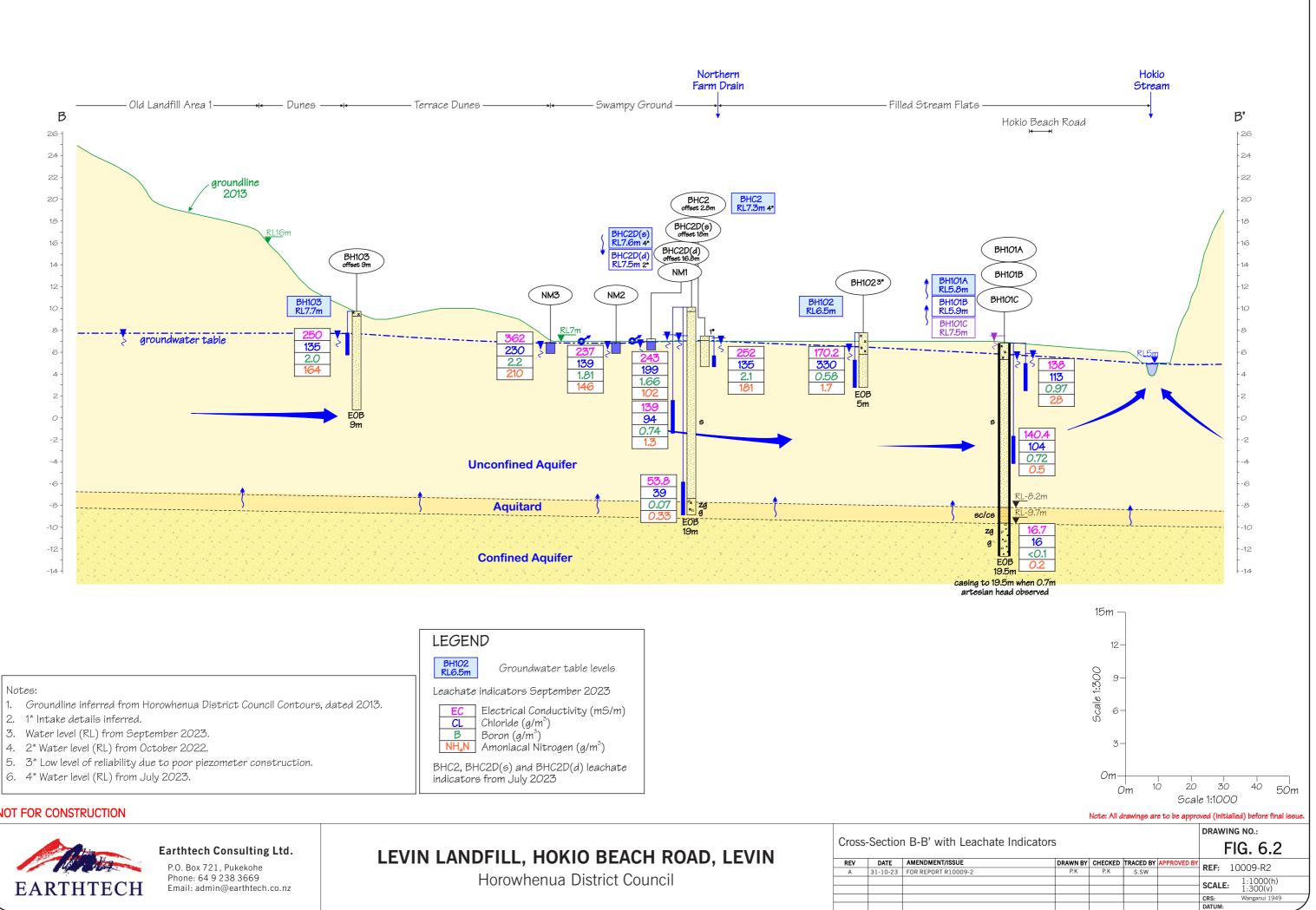
E


NOT FOR CONSTRUCTION FOR INFORMATION ONLY

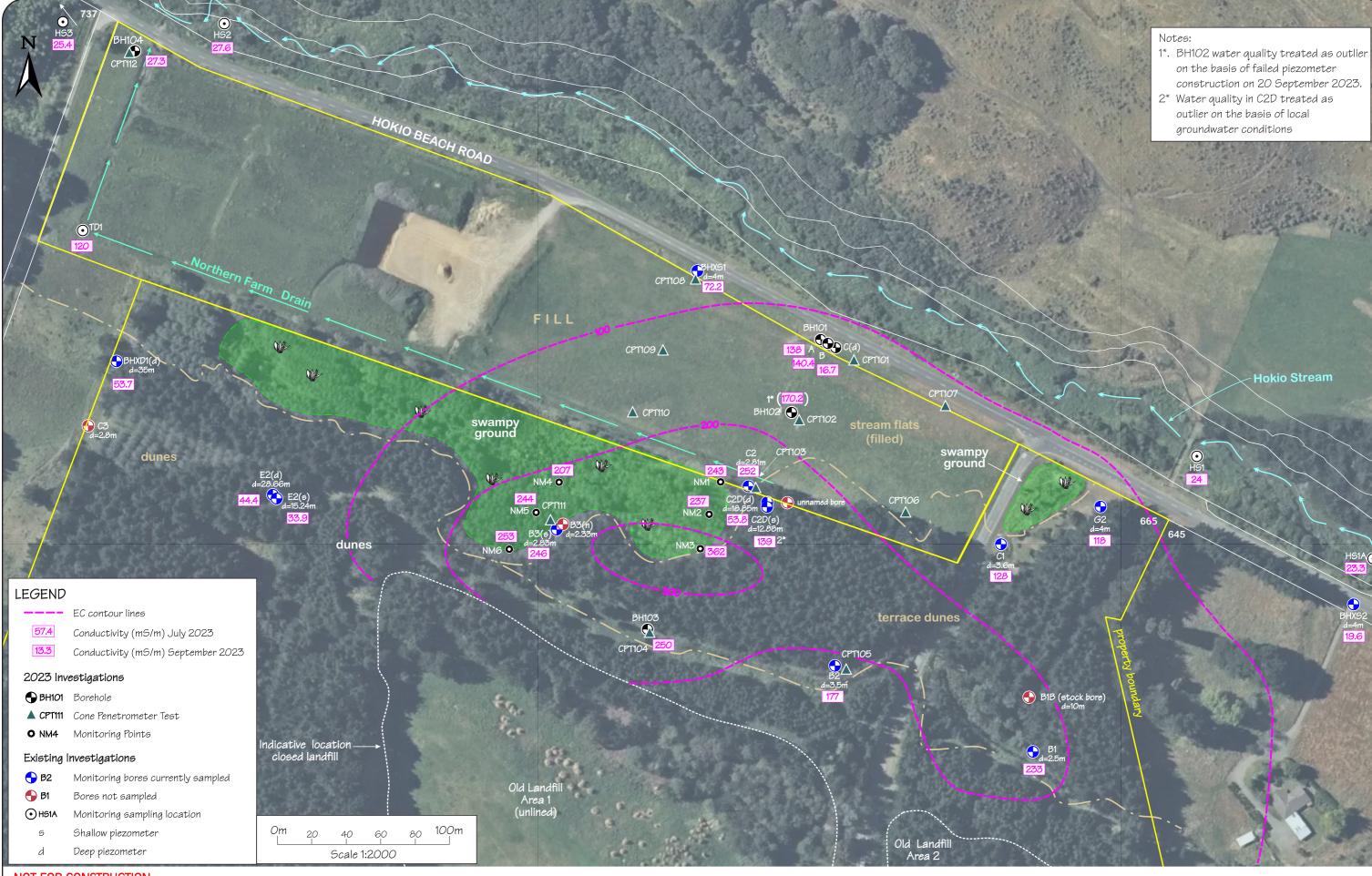
OCATIONS & BORROW AREAS


es 1:2000 (A1) 1:4000 (A3)

310101088-19-001-G001


ents\New Zealand Clients\Horowhenua District Council\80500724 (310101088) - Levin Landfill Volumes\20

6. 4* Water level (RL) from July 2023.

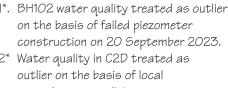

NOT FOR CONSTRUCTION

1.

3.

REV	DATE	AMENDMENT/ISSUE
A	31-10-23	FOR REPORT R10009-2

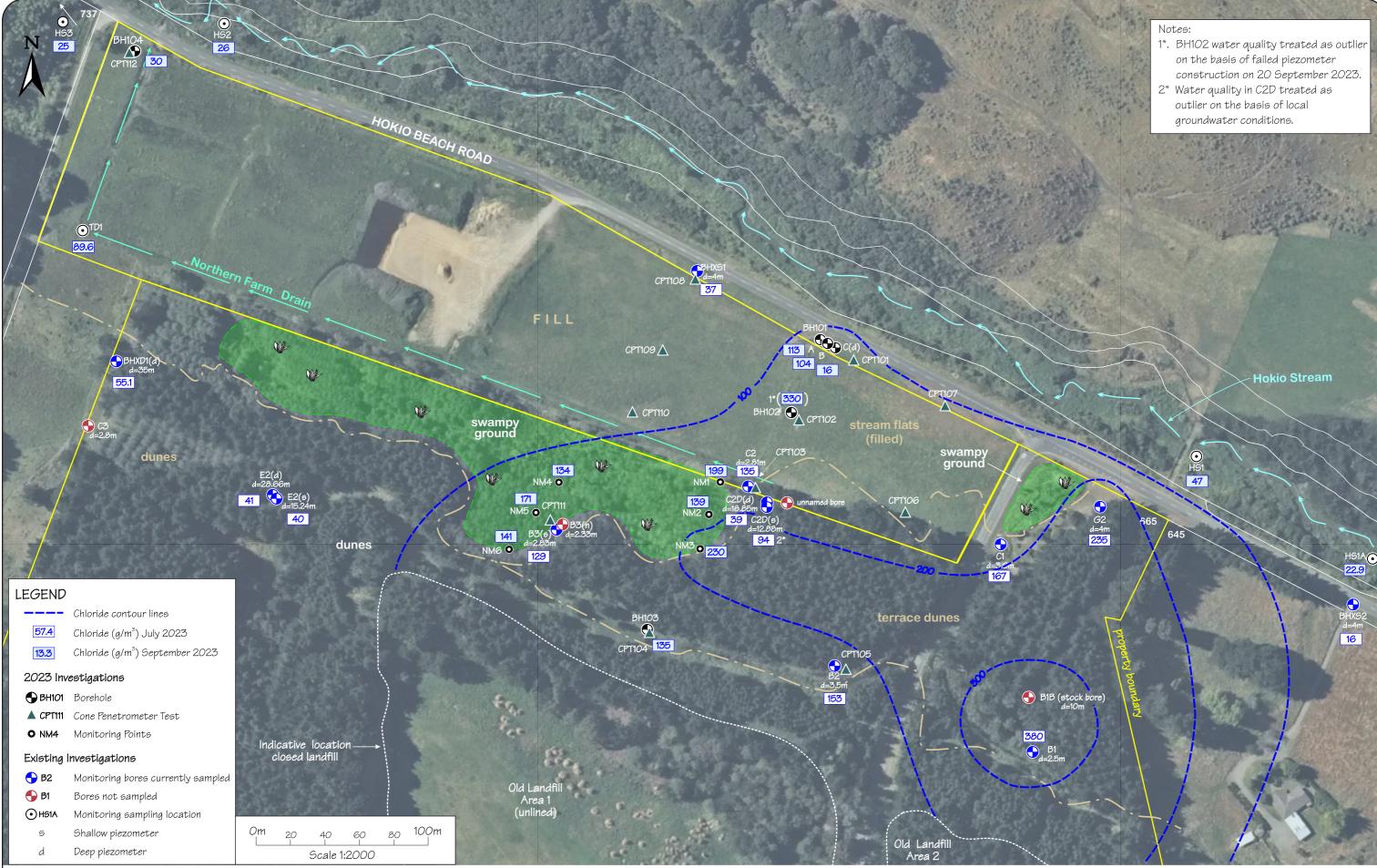
Earthtech Consulting Ltd.


P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD, LEVIN

Electrical Conductivity Plume - Se DATE AMENDMENT/ISSUE REV 08-05-23 DRAFT FOR COMMENT А 10-05-23 FOR FINAL REPORT R10009-1 В 31-10-23 FOR REPORT R10009-2

Horowhenua District Council



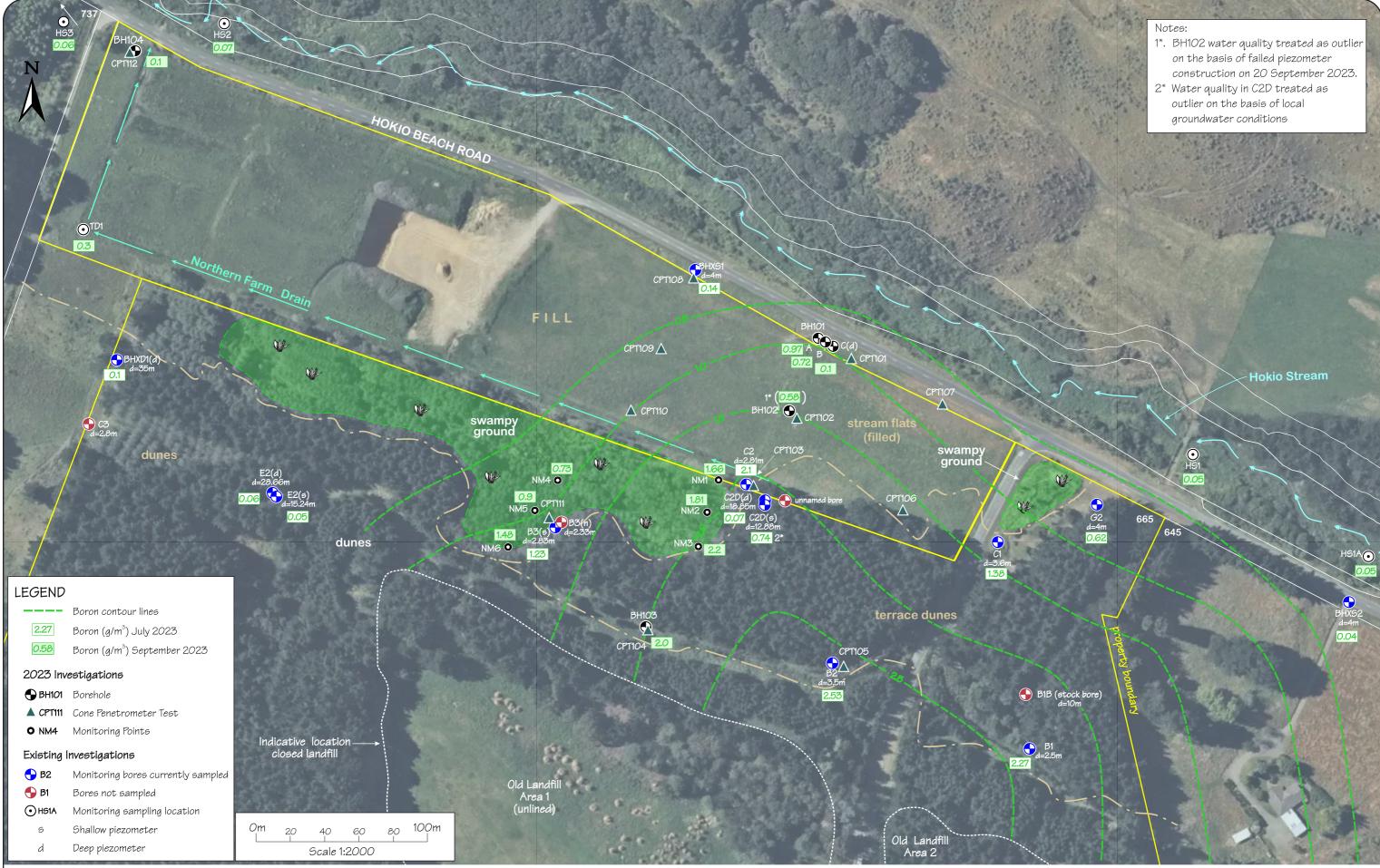
Note: All drawings are to be approved	(initialled) before final issue.
---------------------------------------	----------------------------------

					DRAW	ING NO.:
September 2	2023					FIG. 7
	DRAWN BY	CHECKED	TRACED BY	APPROVED BY	DEE	10009-R2
	M.F	P.K	S.SW		KEF:	10009-R2
	M.F	P.K	S.SW	×R	SCALE	: 1:2000
	M.F	P.K	S.SW		SCALE	: 1:2000
					CRS:	NZTM
					DATUM:	

Earthtech Consulting Ltd.

P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD, LEVIN


Chloride Plume - September 2023 DATE AMENDMENT/ISSUE REV 08-05-23 DRAFT FOR COMMENT 10-05-23 FOR FINAL REPORT R10009-1 Α FOR REPORT R10009-2

Horowhenua District Council

Note: All drawings are to be approved (initialled) before final issue

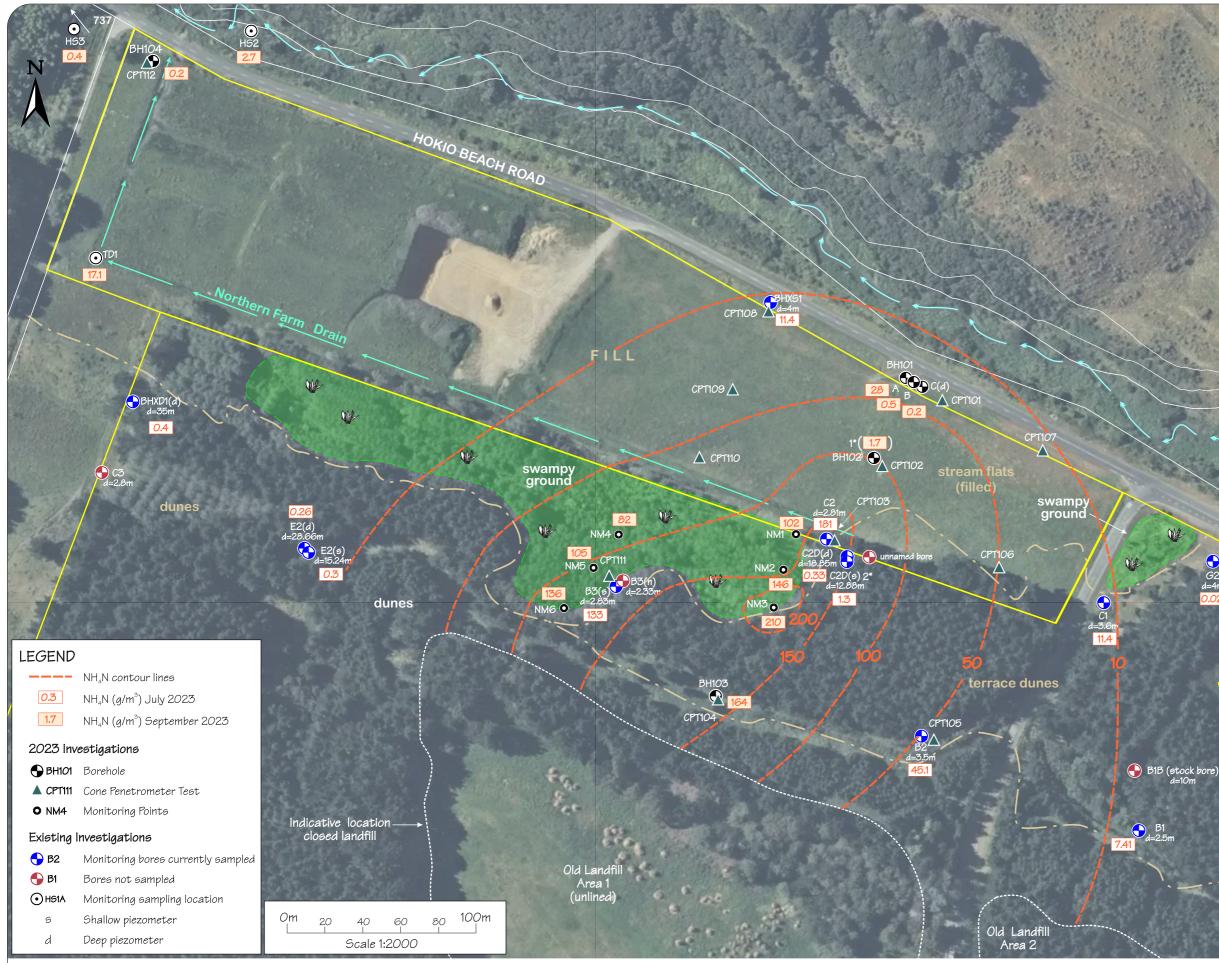
DRAWING NO .:

3						FIG. 8	
	DRAWN BY	CHECKED	TRACED BY	APPROVED BY	DEE.	10009-R2	
	M.F	P.K	S.SW		KEF:	10009-RZ	
	M.F	P.K	S.SW	XR	COALE	1:2000	
	M.F	P.K	S.SW		SCALE	1:2000	
					CRS:	NZTM	
					DATUM:		フ

Earthtech Consulting Ltd.

P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD, LEVIN


Boron Plume - September 2023					
REV	DATE	AMENDMENT/ISSUE			
Α	08-05-23	DRAFT FOR COMMENT			
В	10-05-23	FOR FINAL REPORT R10009-1			
С	26-10-23	FOR REPORT R10009-2			

Horowhenua District Council

Note: All drawings are to be approved (initialled) before final issue

DRAWING NO .:

				FIG. 9
DRAWN BY	CHECKED	TRACED BY	APPROVED BY	REF: 10009-R2
M.F	P.K	S.SW		REF: 10009-R2
M.F	P.K	S.SW	XQ.	SCALE: 1:2000
M.F	P.K	S.SW		SCALE: 1:2000
				CRS: NZTM
				DATUM:

Earthtech Consulting Ltd.

P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD, LEVIN

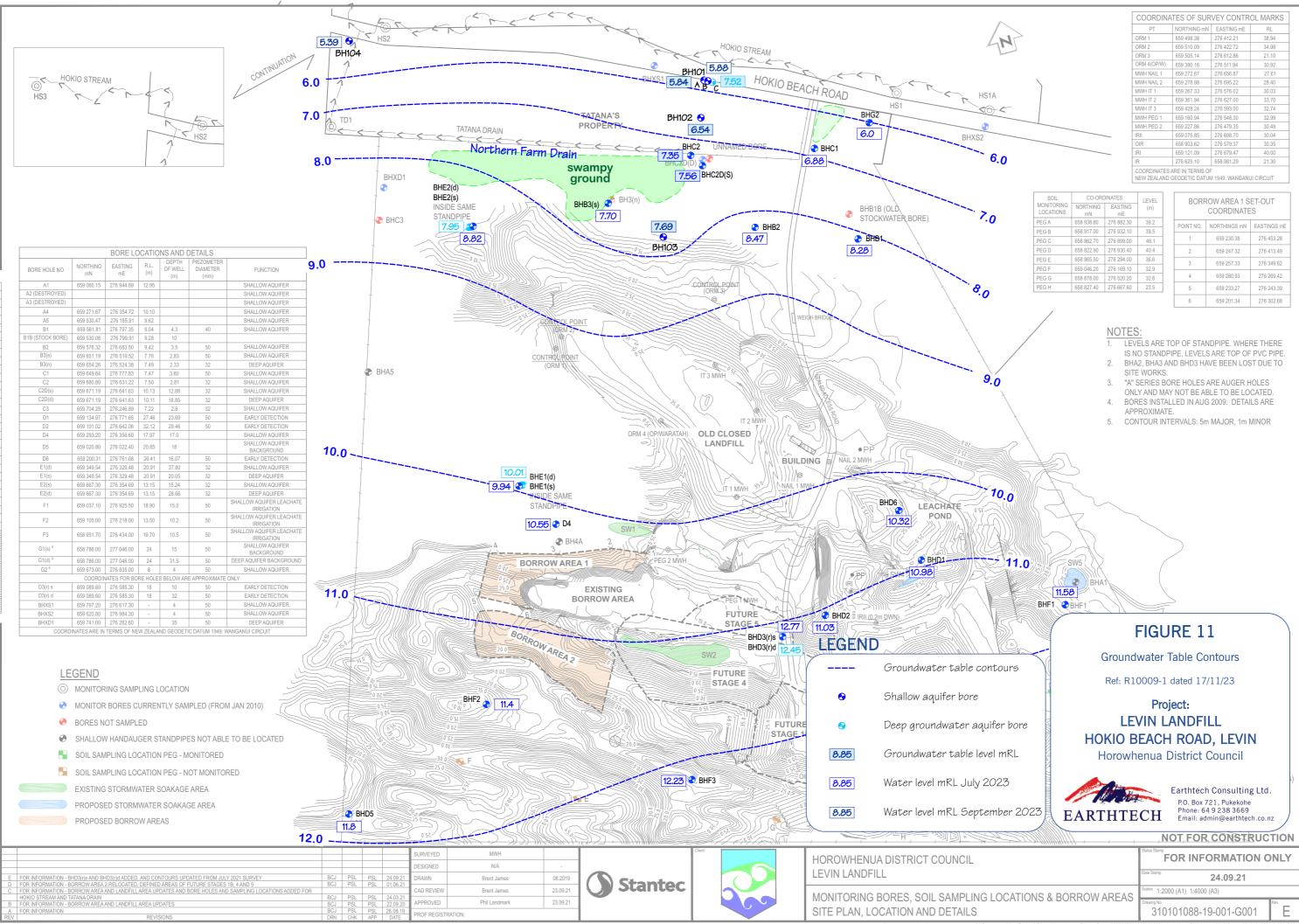
Ammoniacal Nitrogen Plume - Se DATE AMENDMENT/ISSUE REV DRAFT FOR COMMEN Α 08-05-23 FOR FINAL REPORT R10009-1 10-05-23 06-10-23 DRAFT FOR REPORT R10009-2 31-10-23 FOR REPORT R10009-2 D

Horowhenua District Council

Notes:

- 1*. BH102 water quality treated as outlier on the basis of failed piezometer construction on 20 September 2023.
- 2* Water quality in C2D treated as outlier on the basis of local
 - groundwater conditions

Hokio Stream

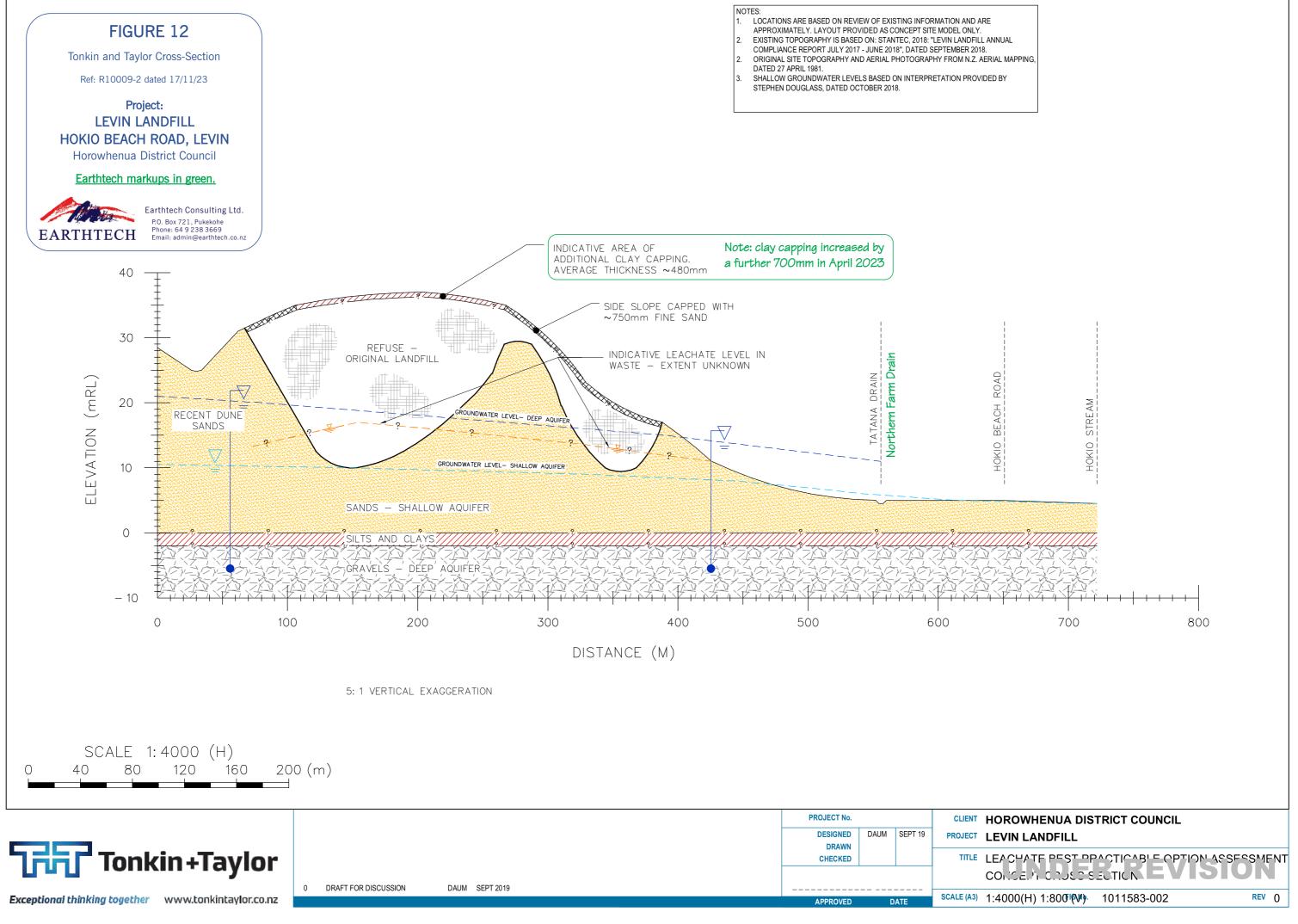

665

645

Note: All drawings are to be approved (initialled) before final issue

DRAWING NO .:

eptember 2						FIG. 10	
	DRAWN BY	CHECKED	TRACED BY	APPROVED BY	DEE.	10009-R2	
	M.F	P.K	S.SW		KEF:	10009-R2	
	M.F	P.K	S.SW	×R	SCALE	: 1:2000	
	M.F	P.K	S.SW/C.M		SCALE	: 1:2000	
	M.F	P.K	S.SW/C.M		CRS:	NZTM	/
					DATUM:		


COORDINATES OF SURVEY CONTROL MARKS										
PT	NORTHING mN	RL								
ORM 1	659 498.38	276 412.21	38.94							
ORM 2	659 510.09	276 422.72	34.98							
ORM 3	659 505.14	276 612.86	21.10							
ORM 4(OP/W)	659 380.16	276 511.94	30.92							
MWH NAIL 1	659 272.67	276 656.87	27.61							
MWH NAIL 2	659 278.98	276 695.22	28.40							
MWH IT 1	659 267.33	276 576.02	30.03							
MWH IT 2	659 361.94	276 627.00	33.70							
MWH IT 3	659 428.24	276 593.00	32.74							
MWH PEG 1	659 160.94	276 548.30	32.99							
MWH PEG 2	659 227.86	276 479.35	30.49							
IRII	659 075.85	276 698.70	30.04							
OIR	658 903.62	276 579.37	30.35							
IRI	659 121.09	276 679.47	40.00							
IR	276 625.10	658 981.29	21.30							

SOIL	CO-ORI	LEVEL		
MONITORING LOCATIONS	NORTHING mN	EASTING mE	(m)	
PEG A	658 938.80	276 882.30	39.2	
PEG B	658 917.00	276 932.10	39.5	
PEG C	658 862.70	276 899.00	46.1	
PEG D	658 822.90	276 930.40	40.4	
PEG E	658 965.50	276 294.00	36.6	
PEG F	659 046.20	276 169.10	32.9	
PEG G	658 878.00	276 520.20	32.6	
PEG H	658 827.40	276 667.60	23.5	

BORROW AREA 1 SET-OUT COORDINATES									
POINT NO.	EASTINGS mE								
1	659 230.38	276 453.28							
2	659 247.32	276 413.49							
3	659 257.33	276 349.62							
4	659 280.93	276 269.42							
5	659 233.27	276 243.39							
6	659 201.34	276 302.68							

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE - IF IN DOUBT, ASK.

T:\Wellington\TT Projects\1011583\WorkingMaterial\Conceptual site model\Working files\Figures.dwg 2019-Sep-26 9:49:04 AM Plotted By: DAVID UMBERG

Conceptual Groundwater Model Report

Levin Landfill, Hokio Beach Road, Levin

Appendix A

Site Investigation Logs and Detailed Observations

EARTHTECH						DRILL HOLE LOG				P	Bore No.: BH101-A Project No.: 10009 Sheet: 1 of 1				
Client: Project Locatic Test Lo	n:	Levi Hok	n Lan		rict Cour d	ıcil	Ι		CRS Elev	S:	NZTM RL6.78m	mE, 5503048.	L	Test Date: 07 Logged by: MI Prepared by: SS Checked by: PK	W
Drilling Progress	Sample Type	Casing Depth (m)	Drill Run (m)	25 50 75	≝ Weathered ≣ (rock only)	 Fracture Log (cm) 	25 Drill Water 25 00 52	Piezometer Construction	Depth (m)	Legend		DESCRIPT	ION OF	STRATA	Geology
	PQ PQ PQ		0.0m 2.0m							× × ×	Silty SAND to S 1.2m-1.5m: Cl 1.5m-1.9m: Si Very fine to fine moist.	Sandy SILT. Loos LAY to Silty CLA Ity SAND to San	e. Y. Loose. Idy SILT. Loos	retation from CPTs; se to medium dens lor silt; grey/beige.	e.
	PQ		4.5m						4			e well graded SA		nse; moist. iy. Very dense; moi	st.
	5:		5.0m						-5 -6 -7 -8 -9 -10 -11		EOB @ 5m <u>Piezometer Const</u> Grout plug Bentonite pel Blinding sanc Filter pack Screen PVC pipe	lets	GL to 1.5 0.5m to 2.0m to 2.5m to GL to 5.0 GL to 5.0	1.5m 2.0m 5.0m 5.0m	
	Sand s	strengt toby b		rpreted fr	rom the cl	osest CP1	Г (Cone P	enetromet	er Tes	it).	Date	Time	Depth of Hole	Depth of Casing	Depth of Water

EA	EARTHTECH				DRILL HOLE LOG					Pro	Bore No.: BH101-C Project No.: 10009 Sheet: 1 of 2				
Client: Project Locatio	:	Levi	in Lan			cil			CRS		1787219.91m NZTM RL6.822m	nE, 5503044.0	Lo	st Date: 06 gged by: Mi epared by: SS	
Test Lo												om BH101-E		ecked by: PK	
Drilling Progress	Sample Type	Casing Depth (m)	Drill Run (m)	25 50 75	정 Weathered 독 (rock only)	 5 5 7 6 7 7 8 7 8 7 8 7 8 8 9 9	52 Drill Water 20 Loss (%)	Piezometer Construction	Depth (m)	Legend		DESCRIPT	ION OF S	TRATA	Geology
-	by hand spade		0.0m						-		SILT and SANE				
	PQ		0.5m						-	×××	Fine to mediun Fine to mediun	n SAND; brown n Silty SAND, w	orange. Loose; ell graded; dar	moist. « grey. Loose; ma	pist.
									-1	× × ×				t; moderately pla	
-									-	X X X X X	Fine to mediun	n Silty SAND; lig	ght grey/beige.	Loose; moist.	
	PQ		1.5m						-2		Fine to mediun some orange. I	n SAND, well gr Nedium dense t	aded with som o dense	e minor silt; grey	
	PQ		4.5m						4		Fine to mediun moist.	n SAND with mi	nor silt, well gi	aded; light grey.	Dense;
									-5		Fine to coarse	SAND, well grac	ded; light grey.	Dense; moist.	
	PQ		5.45m						-		Fine to mediun	n SAND, well gr	aded; grey. Ver	y dense; moist.	
	PQ		6.0m						-6 		6.0m: dense				
	PQ		7.5m						-		7.2m: very der	ise			
	PQ		7.85m						- - - - - - - - - - - - - - - - - - -						
	PQ		9.0m						-9						
- -	PQ		10.2m												
	PQ		10.5m						-11						
Remark												Water Level	Observations [-	1
		trengt	hs inte	rpreted fr	om the cl	osest CPT	Г (Cone F	Penetromete	er Tes	it)	Date	Time	Depth of Hole	Depth of Casing	Depth of Water

Client: Project Locatic	roject: Levin Landfill ocation: Hokio Beach Road est Location:				DR		Co CR Ele	ordinates S: vation:	Bore No.: BH101-0 Project No.: 10009 Sheet: 2 of 2 ps:1787219.91mE, 5503044.05mN Test Date: 06/09/20 NZTM Logged by: MF RL6.822m Prepared by: SSW SSW y: Estimate from BH101-B Survey Checked by: PK					3		
Drilling Progress	Sample Type	Casing Depth (m)	Drill Run (m)	25 50 75	≝ Weathered ₹ (rock only)	⁶¹ Fracture ¹ Log (cm)	52 Drill Water 22 Doss (%)	Piezometer Construction	Depth (m)	Legend		DESCRIPT	ION OF S	STRATA	Geology	devingy
	PQ PQ PQ PQ PQ		12.0m 12.6m 13.5m 15.0m 15.5m 16.5m 18.0m						13		Sandy CLAY wi Moist; highly p Very fine to find Sandy CLAY wi gravels (2mm- Silty medium to Sandy CLAY wi moderately pla Silty medium to 19.3m to 19.5	ith some hard cl lastic. e SAND, well gr ell graded with ith some layers 1cm); brown. Fi o coarse GRAVE	ay inclusions (aded with mind some gravels; I of black organi rm; moist; mod L; light grey. M	c matter and son derately plastic. loist. range. Firm; moi:	y. rey.	
Remark	Sand s	strengt n hea	hs inte d in de	rpreted fr ep gravel	om the cl aquifer o	osest CP1 f 0.7m (7	Г (Cone F 700mm)	Penetromet 18hrs afte	20 21 22 22 22 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	st).	EOB @ 19.5m <u>No Piezometer:</u> <u>Bore grouting</u> Bentonite gro Bentonite plu Pea metal Pea metal	g. Dut Ig	1.0m to 1 15.0m to 16.5m to 0bservations I Depth of Hole	16.5m 19.5m	Depth of Water	

Client: Project						ncil	CRS:				LOG :178710.688m NZTM RL9.41m	IE, 5502880.3	166mN	Bore No.:BH103Project No.:10009Sheet:1 of 1Test Date:05/09/2023Logged by:MFPrepared by:SSW	
Test Lo	catio	n:							Loc	ated by:	Survey			Checked by: Pl	
Drilling Progress	Sample Type	Casing Depth (m)	o Drill Run (m)	25 50 75	≝ Weathered ₹ (rock only)	cm)	52 Drill Water 22 005 (%)	Piezometer Construction	Depth (m)	regend × ·×·×				STRATA	Geology
										× × × × ×	Silty very fine	to fine SAND, w	ell graded; b	; nigh plasticity. prown/orange. Loos n/orange. Loose; m	
	PO		2 0m						 2	$\begin{array}{c} \times & \cdot & \cdot \\ \times & \cdot & \times \\ \times & \cdot & \times \\ \cdot & \times & \times \\ \cdot & \times & \times \\ \cdot & \cdot & \cdot & \cdot \end{array}$	dense to dense	e; moist.		prown/orange. Mec	
	PQ		2.0m 3.0m								Very fine to fin moist.	e SAND, well gr	raded; grey.	Medium dense to o	dense;
	PQ		4.5m						4 4 4						
	PQ		5.1m						5		5.1m: very de	200			
	ru		5.1m									edium SAND, wo	oll gradad, g	roy Moist	
	PQ		6.0m						6 7 7		very line to fit	ann anna, w	en graded, g	ity, worst.	
	PQ		7.5m								8.4m-8.6m: la	ayer of fine to m	edium SANI	D, well graded; dar	k grey.
-			9.0m						-9 		EOB @ 9m				
											Piezometer Cons				
											Bentonite pe Blinding san Filter pack Screen		1.5m t 1.75m	to 1.5m to 1.75m to 4.0m to 4.0m	
									-11		PVC pipe Upstand Top of pipe		GL to 4 0.35m RL9.75	agl	
									-						
Remark	Remarks:							Water Level	1	s During Drilling	D				
	Sand strengths interpreted from the closest CPT (Cone Penetrometer Test). Upstand 0.35m.						Date	Time	Depth of Hole	Depth of Casing	Depth of Water				
	Upstar	ia U.3	un.												

Client: Project Locatio	roject: Levin Landfill ocation: Hokio Beach Road est Location:				DR		Coo CR Ele	ordinates S: vation:	Bore No.: BH104 Project No.: 10009 Sheet: 1 of 1 es:1786813.332mE, 5503216.439mN Test Date: 08/09/2 NZTM Logged by: MF RL6.072m (ground level) Prepared by: SSW y: Survey Checked by: PK						
Drilling Progress	Sample Type	Casing Depth (m)	Drill Run (m)	TCR	Weathered (rock only)	Fracture Log (cm)	Drill Water Loss (%)	Piezometer Construction	Depth (m)	Legend		DESCRIPT	ION OF S	TRATA	Geology
			2.0m 3.0m	25 50 75							CLAY to silty C Silty SAND to CLAY to silty C Silty SAND to Very fine to fin dense; moist.	sandy SILT. Loos CLAY. Loose. sandy SILT. Loos le SAND, well gr	se. se. raded; grey/brow	vn. loose to me	CPTs
			5.0m						-5 -6 -7 -8 -9 -10		EOB @ 5m <u>Piezometer Cons</u> Grout plug Bentonite p Blinding sar Filter pack Screen PVC pipe Upstand Top of pipe	ellets	0.0m to 1 0.5m to 1 1.5m to 2 2.0m to 5 2.5m to 5 GL to 5.0m 0.23m ag RL6.3m	.5m .0m .0m .0m	
Remark		strengt	hs inte	erpreted f	rom the c	losest CP1	Г (Cone F	Penetromet	er Tes	st).	Date	Water Level Time	Observations Depth of Hole	During Drilling Depth of Casing	Depth of Water
														or outing	

	THS DRILLIN EN GEOTECHNICAL SPECIAL	SIT	E INVE	STIG	ATION I	BO	RELOG	BH# JOB#	101 B (recons -	tructed)		
124.0	State Highway 58	Project:	Levin La	ndfill					NZTM	N: 5503	8046.36	5	
F	Pauatahanui 9: 045277346	Location:	Hokio Be	each Roa	d, Levin				Grid Ref:	E: 1787	215.489)	
	: 045277347	Client:	Earthteo	:h		Operate	or:	Bill		•			
www.gr	riffithsdrilling.co.n	z DATE Start:	07/09/2 04/11/23	3 (reconst	ructed	DA Finis		04/11/2	3	Page:	1 of	1	
	Drill R			')				mmer #:	Auto	uto			
	Drilling Metho							ng Type:		/ater / Polymer			
	Bore Diamet		Om rodrill	1				ter / Type:	Sonic				
В	ore Final Dept		um rearin				Fina	l Depth:	13.5m				
Layer Change	Formation Dri (L) – Loose, Unstal		hard and soft		e Samp Recove			Stan	dard Penetra	ation Tes	t (SPT)		
Depth	(S) – Soft, Stable (F) – Firm, Stable	(M) – Moderat (H) – Hard to p			Necove	l y			1				
	(NL) No Loss Geolo	TL) Total Loss; (SL) Slow Loss; (WS) Water Stru			To (m)	Recovery (mm)	Cone Type	Depth	SPT Co	ounts	N Value	Sample (mm)	
(mbgl)													
1.5	Brov	Brown SAND (S) (SL)			1.5	1500		•				•	
				1.5	3.0	1500							
3.0	Grey SAND (S) (SL)			3.0	4.5	1500			N/A – SPT no	ot in scope	2		
				4.5	6.0	1500				·			
				6.0	7.5	1500							
				7.5 9.0	9.0 10.5	1500 1500							
				10.5	12.0	1500	Installation						
13.5		EOH		12.0	13.5	1500							
	*redrilled to						50mm	Piezo install a		ification	,		
		I to depth, wate all the way.					 reconstructed. Blank 0.0-7m bgl Slotted screen 7-12m bgl 						
				e Depth		Water Le	امريد	Dat	te / Time	Hold	e Depth		
Water	Level	Date / Time									Denni		

CDIE				rf inive	STIG	ATION	BO	RELOG		BH#	102 (recon	structe	ed)	
RESULT DRIV	VEN GEOTECHNICAL SPECI	ALISTS	51							JOB#	-			
		Project:	Levin La	andfill						NZTM	N: 550	3005.9	955	
	State Highway 58 Pauatahanui	Location:	Hokio B	each Roa	d, Levir	1				Grid Ref:	E: 178	7189.7	24	
	P: 045277346 F: 045277347	Client:	Earthte		,	Operat	or:	Bill		Ner.				
\A/\A/\A/	riffithsdrilling.co.	DATE		23 (reconst	ructed	DA								
w w w.g	inntinsuming.co.	Start:	04/11/2		in deted	Finis		04/11/2	3		Page:	1	of	1
	Drill	-	ic ML			-		mmer #:	Aut					
	Drilling Meth Bore Diame							ng Type: ter / Type:	Son	ter / Poly uc	mer			
E	Bore Final Dep		n redrill)					I Depth:	6.0					
Layer	Formation D	ill Conditions		Cor	e Samp	oles &		Char	مامسما	Dowotwo	tion To		•	
Change Depth	(L) – Loose, Unst (S) – Soft, Stable	able (B) – Bands of (M) – Moderat		t	Recove	ry		Stan	dard	Penetra	ition le	st (SPI)	
Depth	(F) – Firm, Stable	(H) – Hard to p	enetrate											
	(NL) No Loss	i L) Slow Loss; (WS) Wate		From (m)	To (m)	Recovery (mm)	Cone Type	Depth		SPT Co	unts	N Value		Sample (mm)
(mbgl)	Must Include	Ogical Descripti e: Colour, Texture, Comp Boundary type (gradual,	osition,			Re								Š
0.0	Bro	wn SAND (S) (SL)		0.0	1.5	1500								
				1.5	3.0 4.5	1500								
3.0	Gr	Grey SAND (S) (SL)				1500			N/A	– SPT no	ot in scop	e		
6.0		5011				1500								
0.0		EOH												
		ed to 6.0m – mate ered brown orgar								Installa	ation			
	1.0m, then :	SAND to depth, f return.	ull water											
				_			-							
								50mm	Piezo	install a	s per spe	cificatio	on,	
				_						reconstr				
									•	Blank	0.0-2.0m	n høl		
							•		3.0-5.0r	-				
				_										
Water	2.7m	Date / Time 08/09/23	Ho	e Depth 6.0m		Water Le			-	Time /23 12pr		le Dep 6.0r		
4	2./111	00/09/23		0.011		1.6	111		J#/ II	172 TShu		0.01	п	

Appendix A

New Monitoring Boreholes

The details of the six new boreholes are as follows:

Borehole	Depth	Intake zone	Stickup
	m bgl	m bgl	m agl
BH101A	5	2 to 5	0
BH101B	13	10 to 13	0
BH101B new	13.5	7 to 12	0
BH101C	19.5	-	0
BH102	5	2 to 5	0.25
BH102 new	6	3 to 5	0
BH103	5	1.75 to 4	0.35
BH104	5	2 to 5	0.23

Table A1: New monitoring boreholes details

All bore logs are presented below in Appendix A.

Due to poor bore construction, BH102 and BH101C were redrilled and replaced in November 2023.

Bore development has been undertaken by Earthtech on 20 and 21 September 2023 on BH101A, B, BH102, BH103 and BH104 and on 28 and 29 November 2023 on Bores BH101B new and BH102 new. BH101C has reached the deep groundwater system, which is separated from the shallow, unconfined sand aquifer by a clay aquitard. The deep aquifer showed flowing artesian conditions, with a 700*mm* head (above ground level) approximately 16 hours after drilling. This borehole has been sealed with bentonite grout through the aquitard layer to ensure no mixing of the shallow and deep aquifer waters. The BH101C monitoring bore was not constructed, however, water quality and groundwater levels were assessed during drilling.

The following bore development has been carried out:

Borehole	Development Details	Bore Depth Post-Development
		m bgl
BH101A	Bailed and pumped for 0.5hr	4.3
BH101B	Bailed and pumped for 0.5hr	10.95
BH101B new	Pumped for 0.3hr	10.85
BH102	Bailed for 1.5hr	2.44
BH102 new	Pumped for 0.8 <i>hr</i>	4.89
BH103	Bailed for 0.2hr	4.01
BH104	Pumped and bailed for 1hr	5.06

Table A2: Field investigations - borehole development details

Cone Penetrometer Tests

The twelve CPTs have been conducted on three lines throughout the Tatana property from 4 to 6 September 2023. Their locations are presented in Figure 3. The refusal depths encountered for each CPT are shown in Table 3 below.

All CPTs refused within the very dense sands associated with the shallow unconfined sand aquifer apart from CPT107 which extended to the aquitard.

Table A3: CPT refusal depths

CPT101	CPT102	CPT103	CPT104	CPT105	CPT106
m bgl					
10	9.8	12.5	5.8	5.3	5.3
CPT107	CPT108	CPT109	CPT110	CPT111	CPT112
m bgl					
16.3	11	16	11	5.3	12.5

Shallow Water Monitoring Probes

A swampy area has been observed south of the Tatana property, north of the old Levin Landfill. Six monitoring probes have been installed in this area as two lines of three pipes, each of them measuring 1m in total, and installed 0.5m deep in the swampy area. Field chemistry has been tested on water samples retrieved from these pipes on 5 and 7 September 2023 and the results are presented in Table 4 below.

Monitoring	Area	Date of	EC	EC	NH4-N
Point		installation	µmS/cm	mS/m	mg/l
NM1			1,212	121.2	110
NM2	BHC2 line		1,277	127.7	300
NM3		7-Sep-23	2,095	209.5	380
NM4			924	92.4	120
NM5	BHB3 line		1077	107.7	160
NM6			1420	142	350

Table A4: Northern monitoring probes details and field chemistry testing results

Water sample quality has been tested, and the results from Hill Laboratories are presented in Table 5 below and in Appendix B.

Monitoring Point	рН	NH4-N	EC	CI	B (dissolved)	Tot. Alk.	Bicar- bonate
	-	mg/l	mS/m	mg/l	mg/l	mg/l	mg/l
NM1	7.1	102	243.0	199	1.66	1,010	1,230
NM2	7.1	146	237.0	139	1.81	1,010	1,230
NM3	7.2	210	362.0	230	2.20	1,580	1,930
NM4	7.0	82	207.0	134	0.73	910	1,100
NM5	7.1	105	244.0	171	0.90	1,040	1,270
NM6	7.1	136	253.0	141	1.48	1,100	1,340

Table A5: Shallow water monitoring probes – chemistry

Appendices

Conceptual Groundwater Model Report

Levin Landfill, Hokio Beach Road, Levin

Appendix B

Water Quality Test Data

6 0508 HILL LAB (44 555 22)
 6 +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Client:	Earthtech Consulting Limited
Contact:	Wilbe Blay
	C/- Earthtech Consulting Limited
	PO Box 721
	Pukekohe 2340

Page 1 of 2

SPv1

	Lab No:	3362159	
	Date Received:	12-Sep-2023	
	Date Reported:	19-Sep-2023	
	Quote No:	126263	
	Order No:		
	Client Reference:		
	Submitted By:	Wilbe Blay	
_			-

Sample Type: Aqueous

5						
Sample Name:	BH101C 07-Sep-2023	BH101C [A] 07-Sep-2023	NM1 08-Sep-2023	NM2 08-Sep-202	3 NM3 08-Sep-2023	
Lab Number:	3362159.1	3362159.2	3362159.3	3362159.4	3362159.5	
pH Units	8.1	8.0	7.3	7.3	7.3	
g/m ³ as CaCO ₃	55	53	990	1,040	1,600	
mS/m	16.4	16.7	236	243	363	
g/m³	< 0.10	< 0.10	1.55	1.92	2.4	
g/m³	16	15	200	144	220	
g/m³	0.19	0.18	84	147	220	
Sample Name:	NM4 08-Sep	-2023	NM5 08-Sep-2023	NM	08-Sep-2023	
Lab Number:	3362159	9.6	3362159.7	:	3362159.8	
pH Units	7.2		7.3		7.4	
g/m ³ as CaCO ₃	890		960		1,120	
mS/m	200		226		251	
g/m³ 0.82		1.07			1.71	
g/m³		32 161		139		
g/m³	85		105		132	
	Sample Name: Lab Number: pH Units g/m³ as CaCO ₃ mS/m g/m³ g/m³ g/m³ Sample Name: Lab Number: pH Units g/m³ as CaCO ₃ mS/m g/m³	Sample Name: BH101C 07-Sep-2023 Lab Number: 3362159.1 pH Units 8.1 g/m³ as CaCO ₃ 55 mS/m 16.4 g/m³ < 0.10	Sample Name: BH101C 07-Sep-2023 BH101C [A] 07-Sep-2023 Lab Number: 3362159.1 3362159.2 pH Units 8.1 8.0 g/m³ as CaCO ₃ 55 53 mS/m 16.4 16.7 g/m³ < 0.10	Sample Name: BH101C 07-Sep-2023 BH101C [A] 07-Sep-2023 NM1 08-Sep-2023 Lab Number: 3362159.1 3362159.2 3362159.3 pH Units 8.1 8.0 7.3 g/m³ as CaCO ₃ 55 53 990 g/m³ as CaCO ₃ 55 53 990 mS/m 16.4 16.7 236 g/m³ < 0.10	Sample Name: BH101C 07 -Sep-2023 BH101C [A] 07 -Sep-2023 NM1 08-Sep-2023 NM2 08-Sep-2023 Lab Number: 3362159.1 3362159.2 3362159.3 3362159.4 pH Units 8.1 8.0 7.3 7.3 g/m³ as CaCO ₃ 55 53 990 1,040 mS/m 16.4 16.7 2362 243 g/m³ <0.10 <0.15 1.92 g/m³ 0.10 <0.16 1.55 1.92 g/m³ 0.19 0.18 84 147 Sample Name: NM4 08-Sep-2023 NM5 08-Sep-2023 NM6 Lab Number: 3362159.7 3362159.7 900 1.44 g/m³ as CaCO ₃ 870 7.3 900 1.44 g/m³ as CaCO ₃ 890 960 900 900 900 g/m³ as CaCO ₃ 890 960 900 900 900 900 900 g/m³ as CaCO ₃ 890 960 960 900 960 9	

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous					
Test	Method Description	Default Detection Limit	Sample No		
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-8		
рН	pH meter. APHA 4500-H ⁺ B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-8		
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) 23 rd ed. 2017.	1.0 g/m ³ as CaCO ₃	1-8		
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B 23 rd ed. 2017.	0.1 mS/m	1-8		
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B 23 rd ed. 2017.	-	1-8		
Dissolved Boron	Filtered sample, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.10 g/m ³	1-8		
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-8		
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ - N = NH ₄ +-N + NH ₃ -N). APHA 4500-NH ₃ H (modified) 23 rd ed. 2017.	0.010 g/m ³	1-8		

CCREDITED

FSTING LABORATO

Testing was completed between 13-Sep-2023 and 19-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

unin

Kim Harrison MSc Client Services Manager - Environmental

6 **0508 HILL LAB** (44 555 22) 64 7 858 2000 mail@hill-labs.co.nz www.hill-labs.co.nz

Page 1 of 2

Certificate of Analysis

ient: Earthtech Consulting Limited	
Wilbe Blay	
C/- Earthtech Consulting Limited	
PO Box 721	
Pukekohe 2340	

Lab No:	3369990	SPv2
Date Received:	22-Sep-2023	
Date Reported:	29-Sep-2023	(Amended)
Quote No:	126263	
Order No:	10009	
Client Reference:		
Submitted By:	Wilbe Blay	

Sample Type: Aqueous

Sample Type: Aqueou	IS					
	Sample Name:	BH104 20-Sep-2023 10:55 am	BH101 A 20-Sep-2023 1:14 pm	BH101 B 20-Sep-2023 1:51 pm	BH102 20-Sep-2023 9:10 am	BH103 20-Sep-2023 4:23 pm
	Lab Number:	3369990.1	3369990.2	3369990.3	3369990.4	3369990.5
pН	pH Units	7.3	6.9	6.9	6.7	7.1
Total Alkalinity	g/m³ as CaCO ₃	80	560	630	280	1,060
Bicarbonate	g/m³ at 25°C	98	680	770	340	1,290
Electrical Conductivity (EC)	mS/m	27.3	138.0	140.4	170.2	250
Dissolved Boron	g/m³	< 0.10	0.97	0.72	0.58	2.0
Dissolved Calcium	g/m³	9.3	65	107	101	74
Chloride	g/m³	30	113	104	330	135
Total Ammoniacal-N	g/m³	0.150	28	0.48	1.69	164
	Sample Name:	Nm1 21-Sep-2023 12:04 pm	Nm2 21-Sep-2023 12:10 pm	Nm3 21-Sep-2023 12:15 pm	Nm4 21-Sep-2023 12:31 pm	Nm5 21-Sep-2023 12:27 pm
	Lab Number:	3369990.6	3369990.7	3369990.8	3369990.9	3369990.10
рН	pH Units	7.1	7.1	7.2	7.0	7.1
Total Alkalinity	g/m³ as CaCO ₃	1,010	1,010	1,580	910	1,040
Bicarbonate	g/m³ at 25°C	1,230	1,230	1,930	1,100	1,270
Electrical Conductivity (EC)	mS/m	243	237	362	207	244
Dissolved Boron	g/m³	1.66	1.81	2.2	0.73	0.90
Chloride	g/m³	199	139	230	134	171
Total Ammoniacal-N	g/m³	102	146	210	82	105
	Sample Name:		Nme	6 21-Sep-2023 12:2	23 pm	
	Lab Number:			3369990.11		
рН	pH Units			7.1		
Total Alkalinity	g/m ³ as CaCO ₃			1,100		
Bicarbonate	g/m³ at 25°C			1,340		
Electrical Conductivity (EC)	mS/m			253		
Dissolved Boron	g/m³			1.48		
Chloride	g/m³	3 141				
Total Ammoniacal-N	g/m³			136		
Analystia Commonte						

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3369990-SPv1' issued on 28-Sep-2023 at 4:15 pm. Reason for amendment: At the client's request, testing has been added.

CCREDITED

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous					
Test	Method Description	Default Detection Limit	Sample No		
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-11		
рН	pH meter. APHA 4500-H ⁺ B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-11		
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) 23 rd ed. 2017.	1.0 g/m ³ as CaCO ₃	1-11		
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D 23^{rd} ed. 2017.	1.0 g/m³ at 25°C	1-11		
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B 23 rd ed. 2017.	0.1 mS/m	1-11		
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B 23 rd ed. 2017.	-	1-11		
Dissolved Boron	Filtered sample, ICP-MS, screen level. APHA 3125 B 23rd ed. 2017.	0.10 g/m ³	1-5		
Dissolved Boron	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.005 g/m ³	6-11		
Dissolved Calcium	Filtered sample, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	1.0 g/m ³	1-5		
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-11		
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) 23^{rd} ed. 2017.	0.010 g/m ³	1-11		

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 22-Sep-2023 and 29-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Ara Heron BSc (Tech) Client Services Manager - Environmental

6 0508 HILL LAB (44 555 22)
 6 +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Client:	Earthtech Consulting Limited		
Contact: Wilbe Blay			
	C/- Earthtech Consulting Limited		
	PO Box 721		
	Pukekohe 2340		

Page 1 of 2

Lab No:	3419343	SSSEP-1v1
Date Received:	01-Dec-2023	
Date Reported:	15-Dec-2023	
Quote No:	127765	
Order No:		
Client Reference	10009	
Submitted By:	Wilbe Blay	

Sample Type: Aqueous

	Sample Name:	BH101b New 29-Nov-2023 4:01 pm
	Lab Number:	3419343.1
рН	pH Units	7.4
Total Alkalinity	g/m ³ as CaCO ₃	590
Bicarbonate	g/m³ at 25°C	720
Electrical Conductivity (EC)	mS/m	109.1
Dissolved Boron	g/m³	0.66
Dissolved Calcium	g/m³	94
Chloride	g/m³	71
Total Ammoniacal-N	g/m³	0.48

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous Test	Method Description	Default Detection Limit	Sample No
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1
рН	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m³ as CaCO ₃	1
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m³ at 25°C	1
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	1
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	1
Dissolved Boron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.005 g/m ³	1
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ - N = NH ₄ +N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	1

CCREDITED

FSTING LABORATO

Testing was completed between 04-Dec-2023 and 15-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Ara Heron BSc (Tech) Client Services Manager - Environmental

6 0508 HILL LAB (44 555 22)
 6 +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Page 1 of 2

Certificate of Analysis

Client:	Earthtech Consulting Limited	Lab No:	3419343	SSSEP-2v1
Contact:	Wilbe Blay	Date Received:	01-Dec-2023	
	C/- Earthtech Consulting Limited	Date Reported:	15-Dec-2023	
	PO Box 721	Quote No:	127765	
	Pukekohe 2340	Order No:		
		Client Reference:	10009	
		Submitted By:	Wilbe Blay	

Sample Type: Aqueous

	Sample Name:	BH102 New 29-Nov-2023 1:20 pm
	Lab Number:	3419343.2
рН	pH Units	7.1
Total Alkalinity	g/m ³ as CaCO ₃	260
Bicarbonate	g/m³ at 25°C	320
Electrical Conductivity (EC)	mS/m	112.9
Dissolved Boron	g/m³	0.38
Dissolved Calcium	g/m³	82
Chloride	g/m³	171
Total Ammoniacal-N	g/m ³	1.33

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous				
Test	Method Description	Default Detection Limit	Sample No	
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	2	
рН	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	2	
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	2	
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m³ at 25°C	2	
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	2	
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	2	
Dissolved Boron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.005 g/m ³	2	
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	2	
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	2	
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	2	

Testing was completed between 04-Dec-2023 and 07-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Ara Heron BSc (Tech) Client Services Manager - Environmental

6 0508 HILL LAB (44 555 22)
 6 +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Page 1 of 2

Certificate of Analysis

Client:	Earthtech Consulting Limited	Lab No:	3419343	SSSEP-3v1
Contact:	Wilbe Blay	Date Received:	01-Dec-2023	
	C/- Earthtech Consulting Limited	Date Reported:	15-Dec-2023	
	PO Box 721	Quote No:	127765	
	Pukekohe 2340	Order No:		
		Client Reference:	10009	
		Submitted By:	Wilbe Blay	

Sample Type: Aqueous

	Sample Name:	Rinsate 29-Nov-2023 2:10 pm
	Lab Number:	3419343.3
pН	pH Units	7.5
Total Alkalinity	g/m³ as CaCO3	17.9
Bicarbonate	g/m³ at 25°C	22
Electrical Conductivity (EC)	mS/m	8.8
Dissolved Boron	g/m³	0.017
Dissolved Calcium	g/m³	4.7
Chloride	g/m³	12.6
Total Ammoniacal-N	g/m³	< 0.010

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous				
Test	Method Description	Default Detection Limit	Sample No	
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	3	
рН	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	3	
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	3	
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m³ at 25°C	3	
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	3	
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	3	
Dissolved Boron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.005 g/m ³	3	
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	3	
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	3	
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ - N = NH ₄ +-N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	3	

Testing was completed between 04-Dec-2023 and 07-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Ara Heron BSc (Tech) Client Services Manager - Environmental

6 0508 HILL LAB (44 555 22)
 6 +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Page 1 of 2

SSSEP-4v1

Certificate of Analysis

Client:	Earthtech Consulting Limited	Lab No:	3419343
Contact:	Wilbe Blay	Date Received:	01-Dec-2023
	C/- Earthtech Consulting Limited	Date Reported:	15-Dec-2023
	PO Box 721	Quote No:	127765
	Pukekohe 2340	Order No:	
		Client Reference:	10009
		Submitted By:	Wilbe Blay

Sample Type: Aqueous

	Sample Name:	Rinsate Blank 29-Nov-2023 7:30 am
	Lab Number:	3419343.4
pН	pH Units	7.5
Total Alkalinity	g/m ³ as CaCO ₃	17.4
Bicarbonate	g/m³ at 25°C	21
Electrical Conductivity (EC)	mS/m	8.7
Dissolved Boron	g/m³	0.017
Dissolved Calcium	g/m³	4.8
Chloride	g/m³	12.5
Total Ammoniacal-N	g/m³	< 0.010

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous				
Test	Method Description	Default Detection Limit	Sample No	
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	4	
рН	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	4	
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	4	
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m³ at 25°C	4	
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	4	
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	4	
Dissolved Boron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.005 g/m ³	4	
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	4	
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	4	
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ ⁺ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	4	

CCREDITED

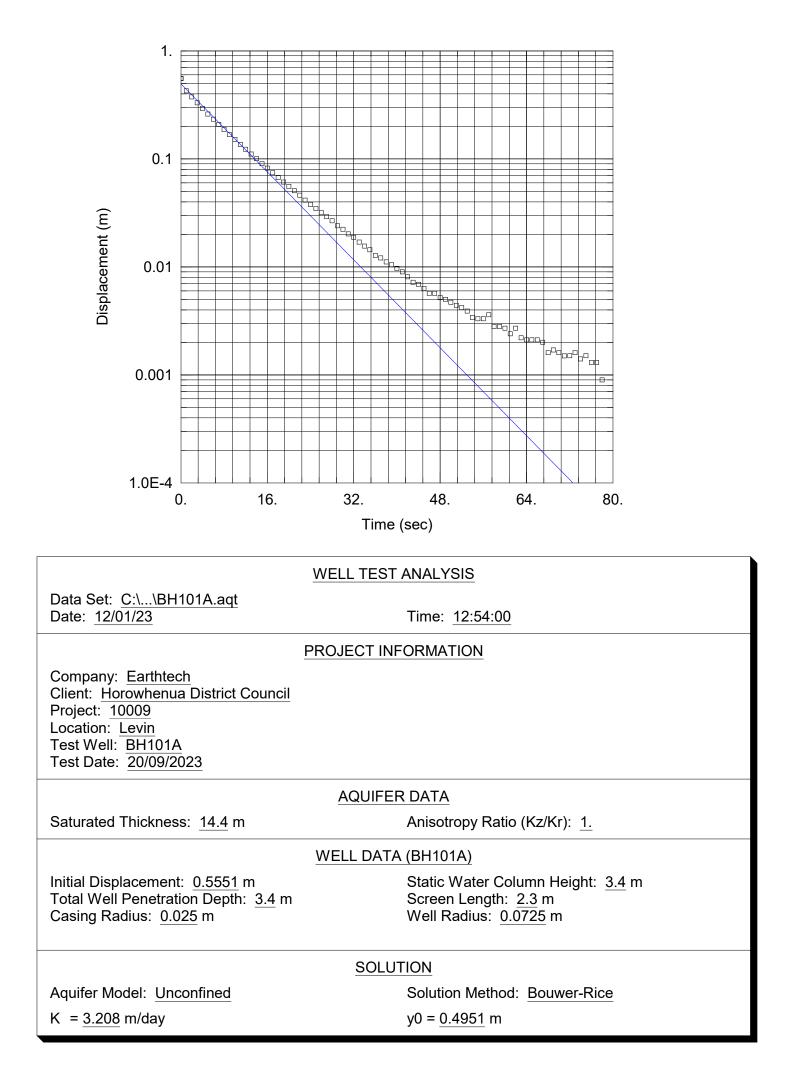
FSTING LABORATO

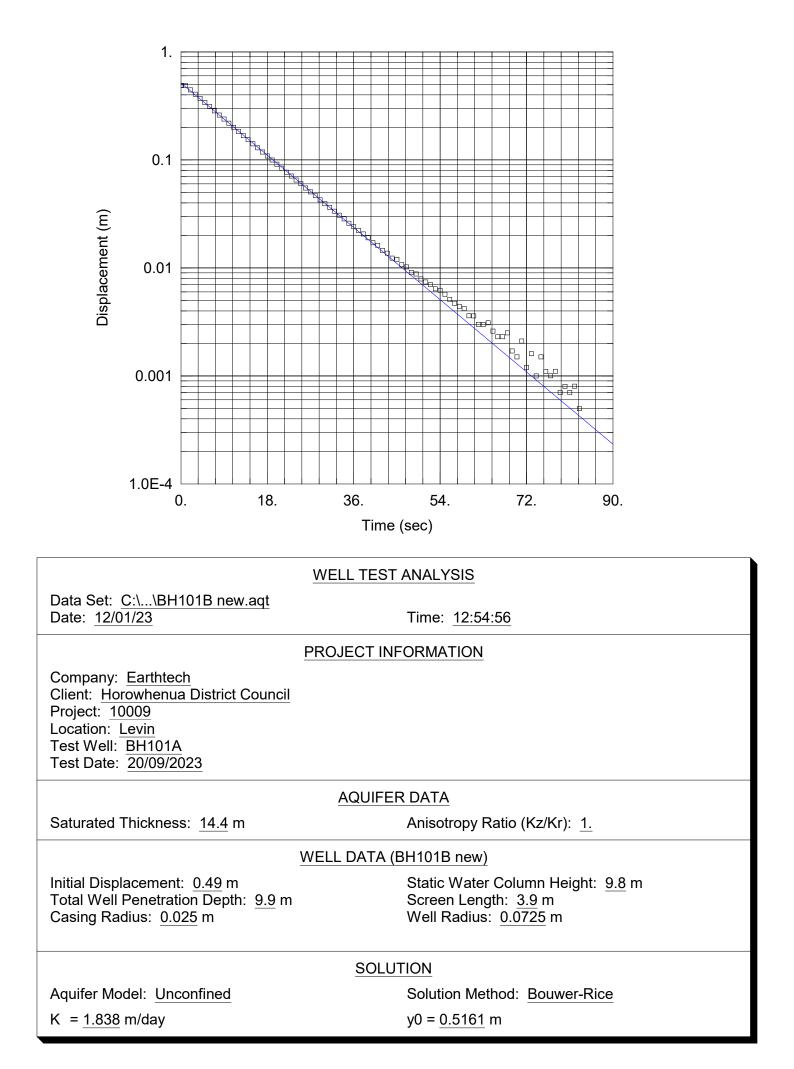
Testing was completed between 04-Dec-2023 and 07-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

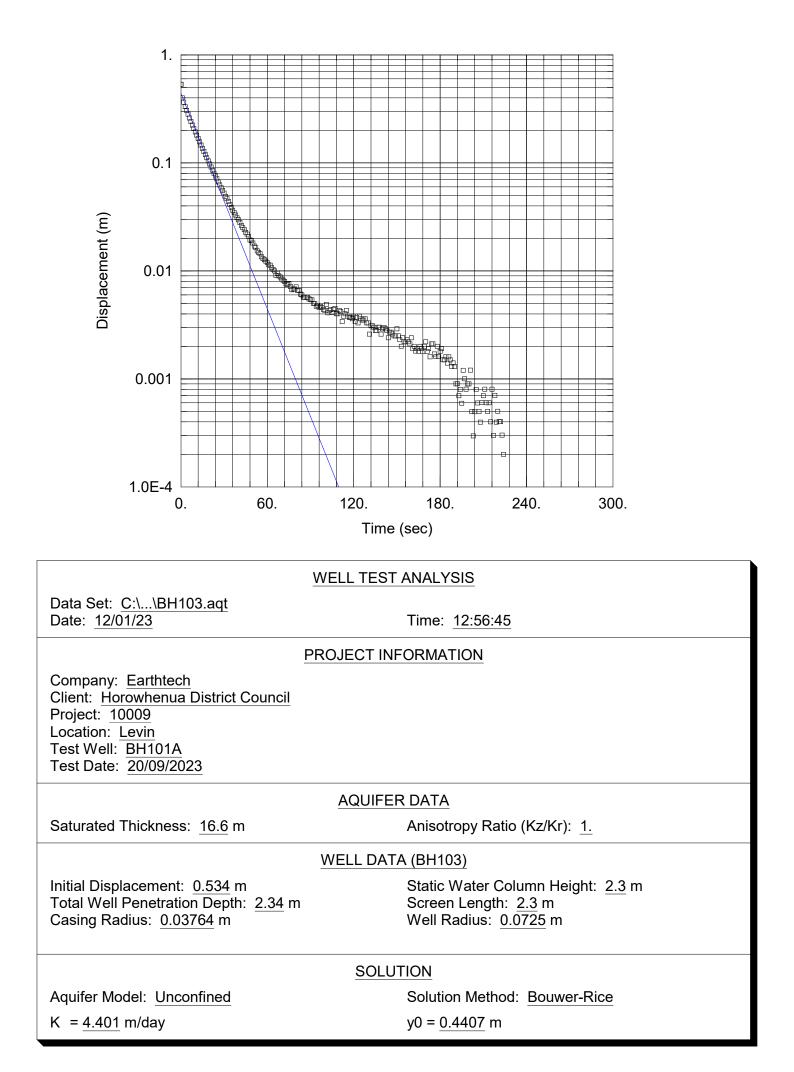
Ara Heron BSc (Tech) Client Services Manager - Environmental

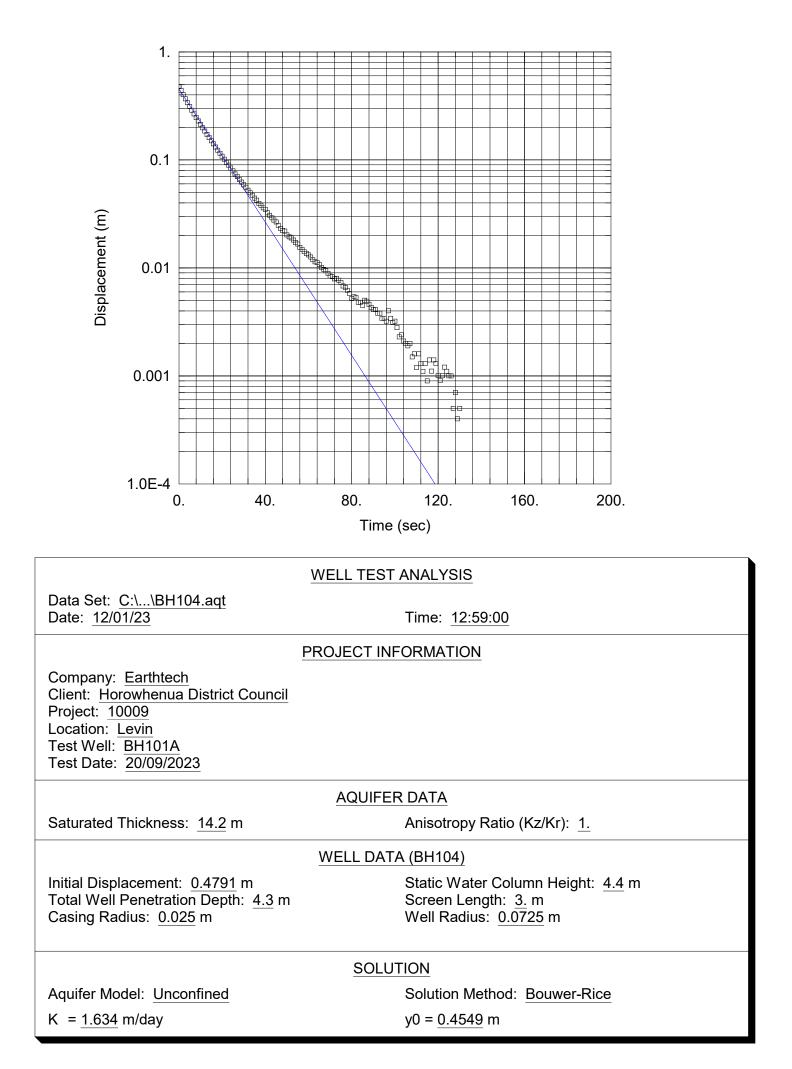
Appendices

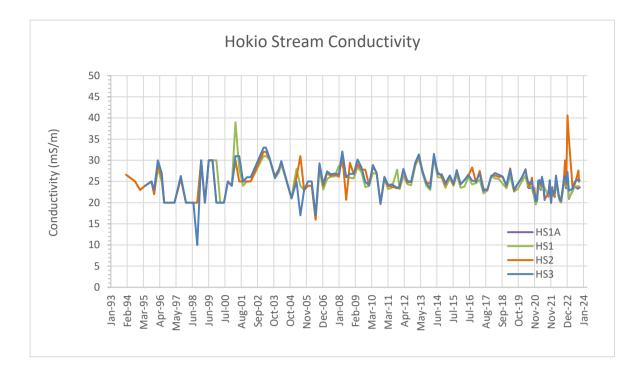

Conceptual Groundwater Model Report

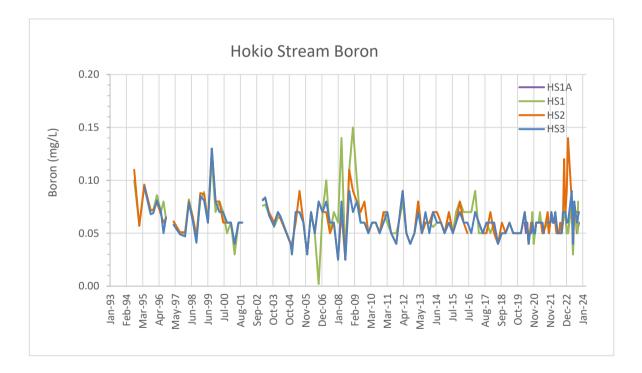

Levin Landfill, Hokio Beach Road, Levin

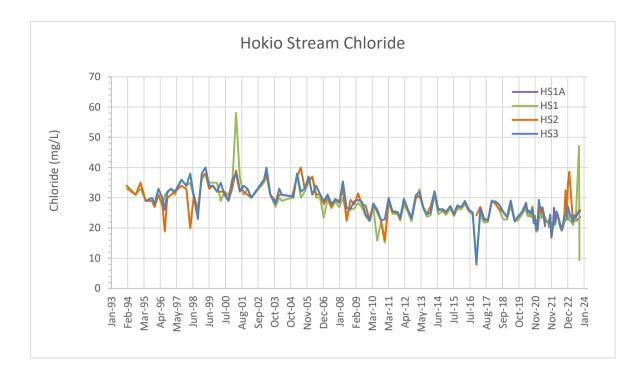

Appendix C

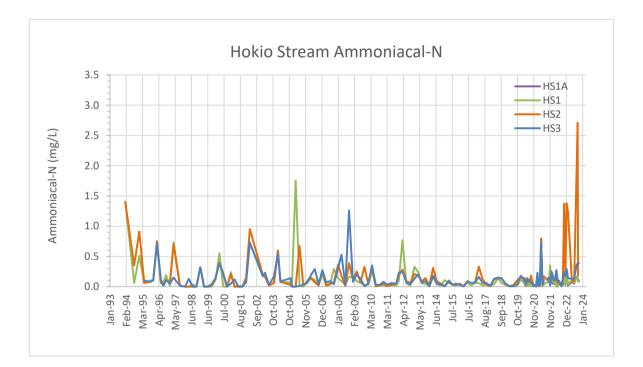

Permeability Test Analyses

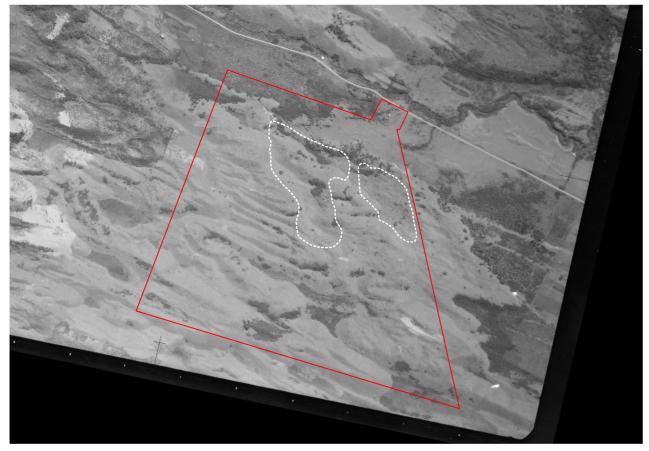



Conceptual Groundwater Model Report

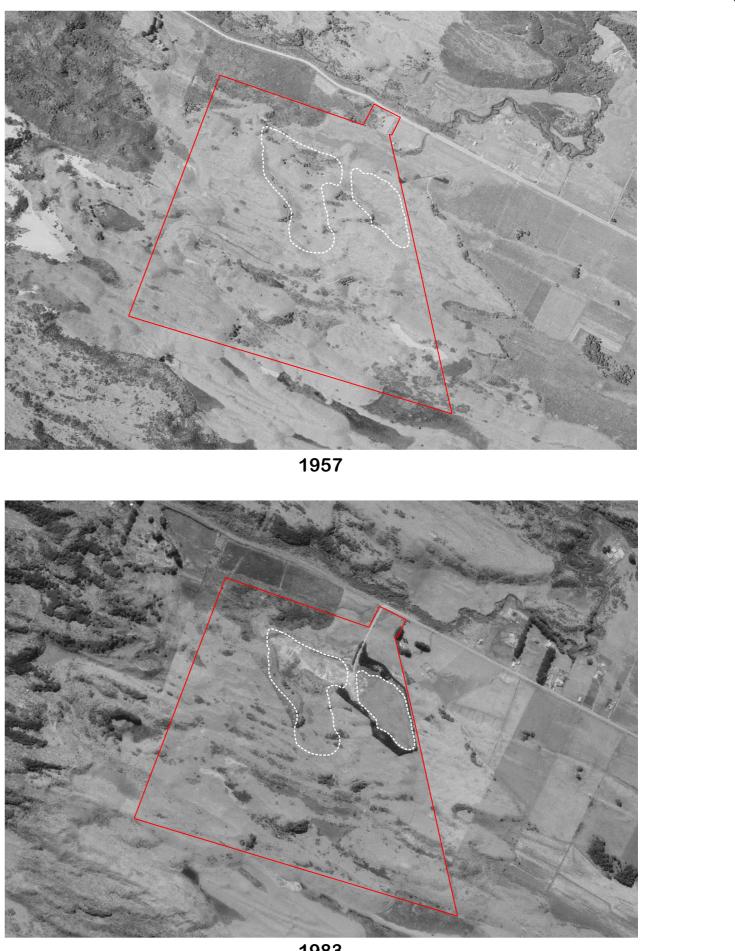

Levin Landfill, Hokio Beach Road, Levin


Appendix D

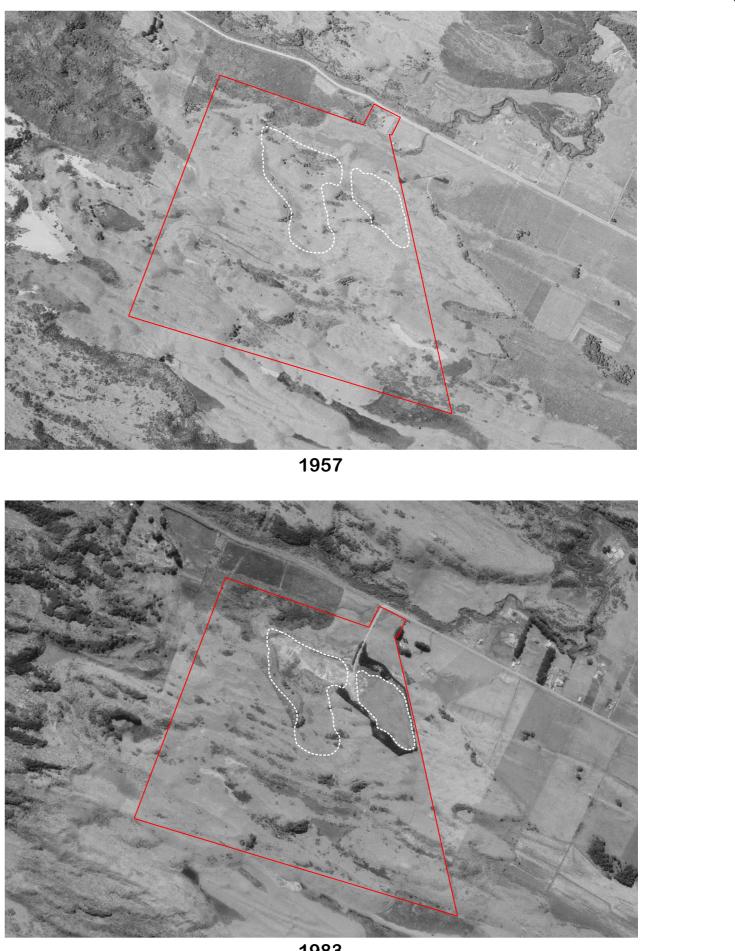

Surface Water Ammoniacal-Nitrogen Plots


Conceptual Groundwater Model Report

Levin Landfill, Hokio Beach Road, Levin


Appendix E

Historic Aerial Photographs 1939 - 2016



1939

FOR INFORMATION

1971

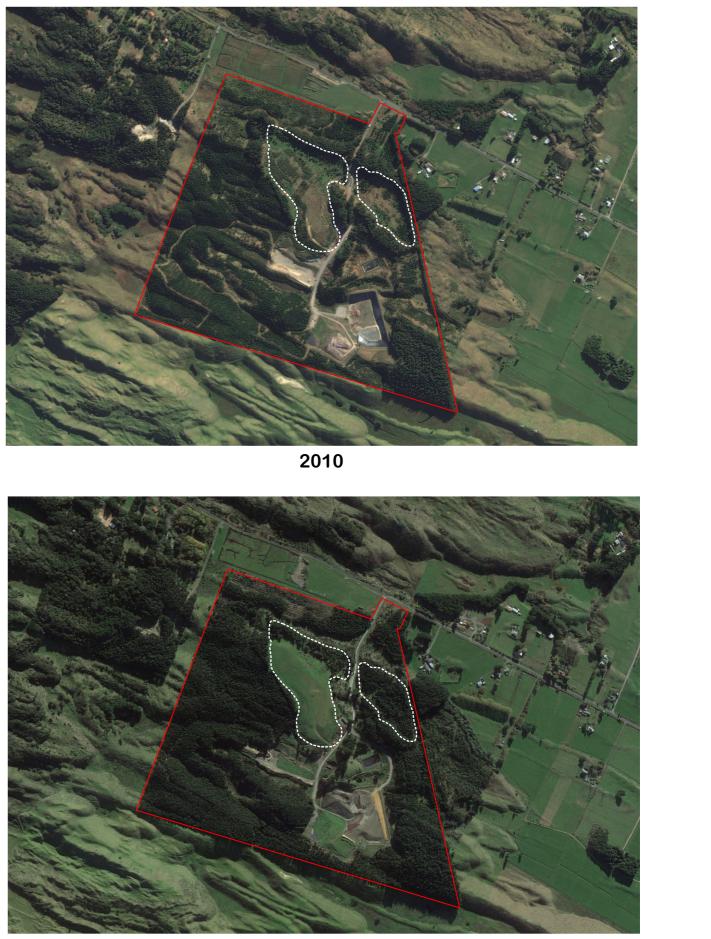
1983

Earthtech Consulting Ltd.

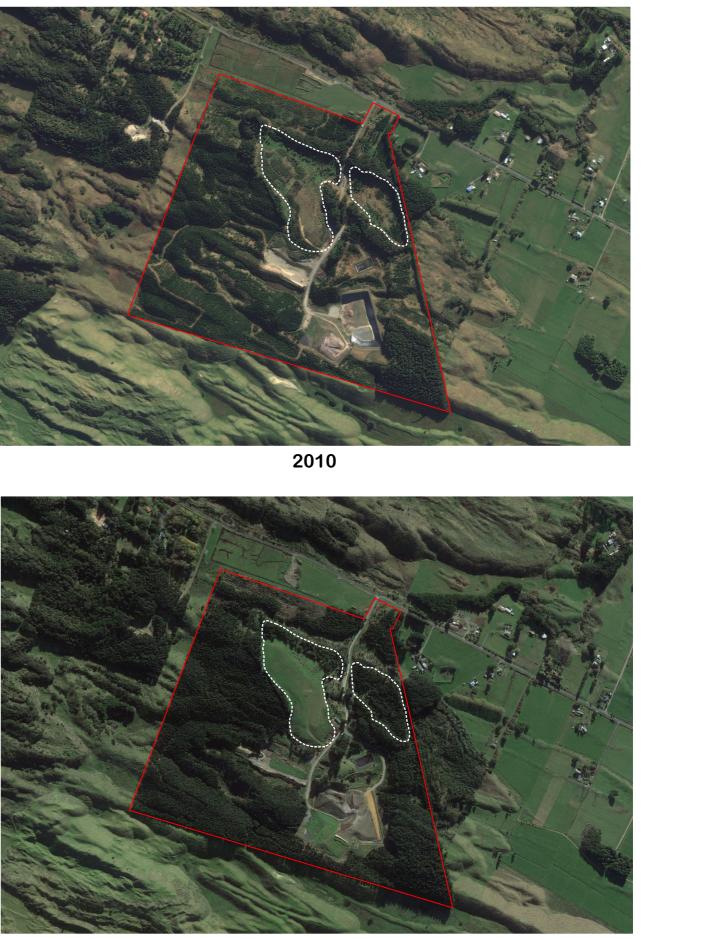
P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD

Horowhenua District Council


Historic Images 1939 to 1983				
REV	DATE	AMENDMENT/ISSUE		
A	07-09-23	DRAFT FOR COMMENT		
В	31-10-23	UPDATE OLD LANDFILL AREAS		

Note: All drawings are to be a	approved (initialled)) before final issue.
--------------------------------	-----------------------	-----------------------


				DRAW	ING NO.:
					FIG. A
DRAWN BY	CHECKED	TRACED BY	APPROVED BY	DEE	10009
P.K	P.K	S.SW		KEF:	10009
P.K	P.K	S.SW		SCALE	: nts
				JUALL	. 1103
				CRS:	NZTM
				DATUM:	

2005

FOR INFORMATION

2013

2016

Earthtech Consulting Ltd.

P.O. Box 721, Pukekohe Phone: 64 9 238 3669 Email: admin@earthtech.co.nz

LEVIN LANDFILL, HOKIO BEACH ROAD

Horowhenua District Council

Historic Images 2005 to 2016				
REV	DATE	AMENDMENT/ISSUE		
Α	07-09-23	DRAFT FOR COMMENT		
В	31-10-23	UPDATE OLD LANDFILL AREAS		

Note: All drawings are to be approved (initialled) before final issue.

					DRAWING NO.:		
						FIG. B	
DR	AWN BY	CHECKED	TRACED BY	APPROVED BY	REF:	10000	
	P.K	P.K	S.SW			10009	
	P.K	P.K	S.SW		SCALE: nts	nte	
						1115	
					CRS:	NZTM	7
					DATUM:		7