

Neighbourhood Liaison Group (NLG) Meeting Thursday 7 September 4:30pm – 6:00pm Rimu/Totara Room, Te Takeretanga o Kura-hau-pō, 10 Bath Street, Levin 5510

In attendance

Parekura McGregor (Facilitator)	David Moore					
Dan Higgs (Horizons Regional Council)	Graeme Lindsay					
David McMillan (HDC)	Viv Bold					
Daniel Haigh (HDC)	Lindsay Strachan (Earthtech)					
Deanna Paki (Lake Trustee)	Matilda (Earthtech)					
Scott Wardlaw	Charles Rudd					
Christine Moriarty	Taitiana Taukiri (HDC)					
Jack Warren	Campbell Dodds (HRC)					

Welcome and Karakia

Meeting opened by new Chair, Parekura McGregor and a karakia by David Moore.

Apologies

Eugene Henare, Jenny Rowan, Rachel Moore and Peter Everton.

Moved: Deanna Paki

Seconded: David Moore

Acknowledgments

Acknowledgements for Daniel Parker, Turkington Team, Dean Wilson, Remana Sullivan-Rudd, Pātaka Moore, Ricky Heihei.

Meeting Purpose

Daniel introduced Lindsay and mentioned that the purpose of the meeting is to share information widely and efficiently.

Earthtech Report Update and Presentation

Lindsay discussed the presentation. Presentation attached below.

Levin Landfill Site Investigations

4 - 9 September 2023

Assessment of Groundwater Pollution Plume Mobility and Remediation Plan

EARTHTECH

Overview of today's presentation

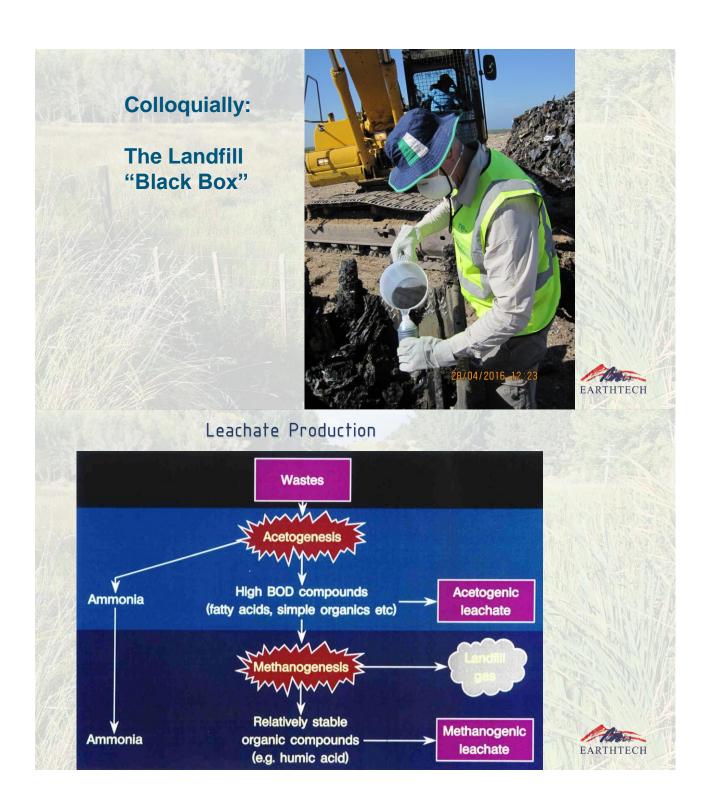
- Landfill leachate a brief overview of type, age, concerns
 - Also covering ammonical-Nitrogen
 - Leachate treatment
 - Wetlands systems

Overview of the Investigations taking place

- The plan and approach
- Findings so far

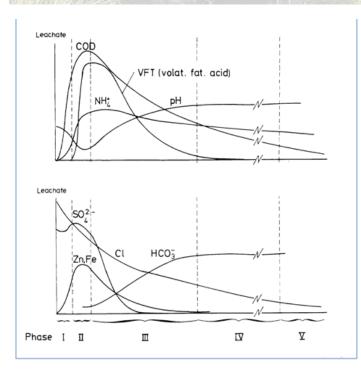
🗖 Q & A

Landfill leachate may be defined as being:

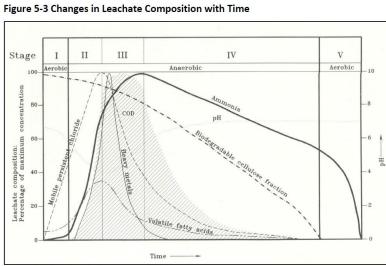

The liquid emission resulting from the biodecomposition processes of landfilled wastes and the flushing of liquids (mainly rainwaters) through the wastes.

FARTHTECH

Further:


A highly concentrated and complex waste water comprising numerous dissolved contaminants, dependant upon the advancement of the waste degradation processes

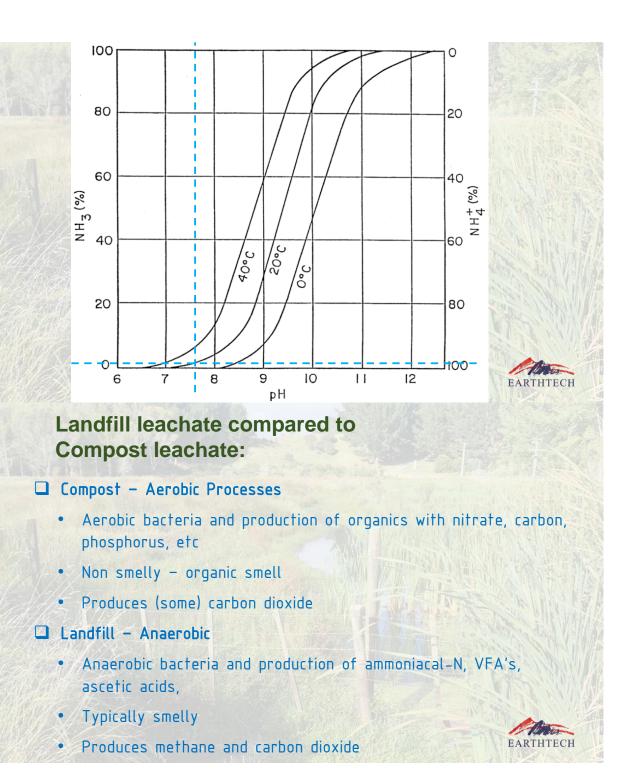
Landfill Leachate Introduction

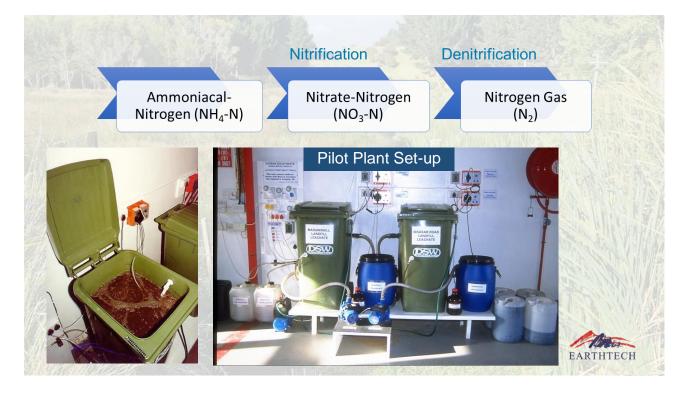

Milestone Works:

- 1. Farquhar and Rovers (1973)
- 2. Ham and Bookter (1982) (from works from 1966)
- 3. Howard Robinson (1982 date)
- 4. Keith Knox (1983 date)
- 5. Ehrig (1984)
- 6. Christensen and Kjeldsen (1989)
- 7. Christensen, Cossu and Stegmann (1992)

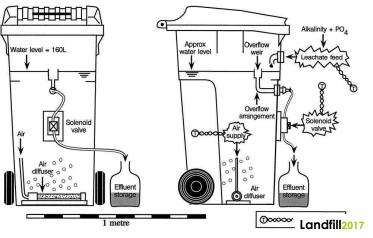
Landfill Processes

Developments in landfill leachate (Christensen & Kjeldsen, 1989 and Christensen, Cossu and Stegmann, 1990)




Landfill Processes

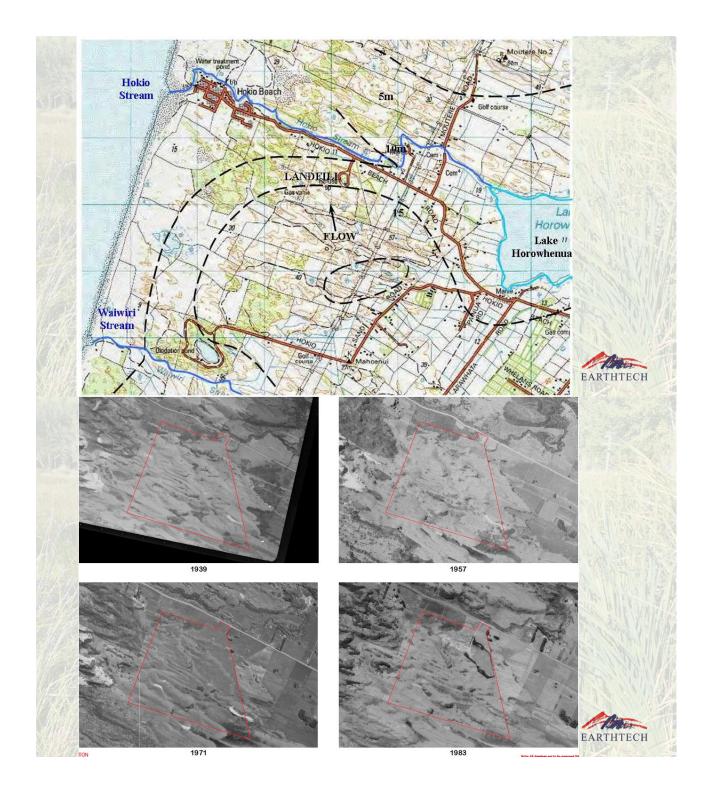
Technical Guidelines for Disposal to Land **Rev 3, pg 58 (WasteMINZ, 2022)**

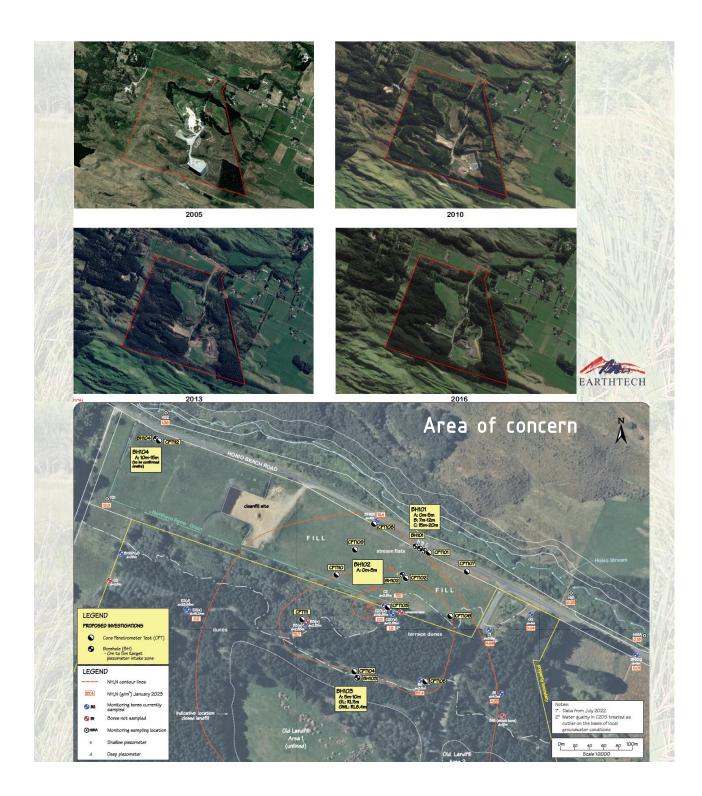

Source: UK Department of Environment 1991

	1 IA														18 VIIIA			
	1 H Hydrogen 1.008	2 11A 2A			Pe	riodic		he Ele	ments	13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	² He Helium 4.003			
	3 Li B	Be erytitum 9.012					Symbol _{Name}			5 B Boron 10.811	6 C Carbon 12.011	7 Nutrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180			
	Sodium Ma 22.990	Mg 3 agnesium 3 24,305 3B	4 IVB 4B	5 VB 5B	6 VIB V 6B 7	в	Atomic Mass	0 11 IB 1B	12 IIB 2B	13 Al Atuminum 26.982	14 Si Silicon 28.086	15 P Phosphores 30.974	16 S Sultur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948			
	Potassium C	Ca Scandiu 40.078 Scandiu 44.950	m Titanium	23 V Vanadium 50.942	24 25 Cr N Chromium 51.996 54.	mese Iron	27 28 Co N Cobalt 58,933 58, 45 46	29 Cu Copper 63.546	30 Zn 2inc 65.38	Gallium 69.723	Germanium 72.631	33 As Arsenic 74.922	34 Se selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 84.798			
	Rb Rubiclium St	Sr Y trontium 87.62 Yttrium 88.90	Zirconium 91.224	Nb Nioblum 92.906	42 43 Mo T Molybdenum 15chr 95.95 98. 74 75	tium Rutheniur	Rh P	d Ag	48 Cd Cadmium 112.411	49 In Indium 114.818	Sn 118.711 82	Sb Antimony 121.760	Tellurium 127.6	126.904	Xe Xenon 131.294			
	Cs	Ba Bartum 137.328	Hafnium 178.49	Ta Tantalum 180.948	W R Tungsten 183.84 186 106 107				Hg Mercury 200.592	TI Thallium 204.383	Pb Lead 207.2	Bi Bismuth 208,980	Po Polonium [208.982]	At Astatine 209.987	Rn Radon 222.018			
	Fr Francium	Radium 226.025	Rutherfordium	Db	Sg B Seaborgium [266] [2	h Hs	Mt D	s Rg	Copernicium [277]	Uut Beantriam unknown	FI Filerovium [289]	Ununpentium unknown	Lv Livermorium [298]	Ununseptium unknown	Ununoctium unknown			
		Actinide Series	Actinium Ce 138.905 141 90 Actinium The	Ce P Prasect 140: Prasect 140: Ph Protect 231/	144.243 908 92 92 Uranium	Promothium 144.913 Sa 93 94 Np Neotumber P	Sm ⁶³ Eu Europium 150.38 ⁹⁵ Pu ⁹⁵ Am Americium 243.061	Gadolinium 157.25 1 96 97 Cartum Fi	Bk rkelium Calif	Cf 99 Cf Enat	4.930 Ei 4.930 16 Es F Solution	101 milum Mend	102 102 102 102 Nob	bium Late 055 174 103 0 Late	U tium 967 .r rctum 52]		A Series	11/2
Cor	nver	ting	NH ₃	to	NH ₄ -	N	Semimetal Nor	metal Hale		oble Las	anthanide	Actinide			Todd Heimensline			2
Ν			14									1			sciencescies.arg	and and	en	1
Н			1														EARTHT	₽ FC

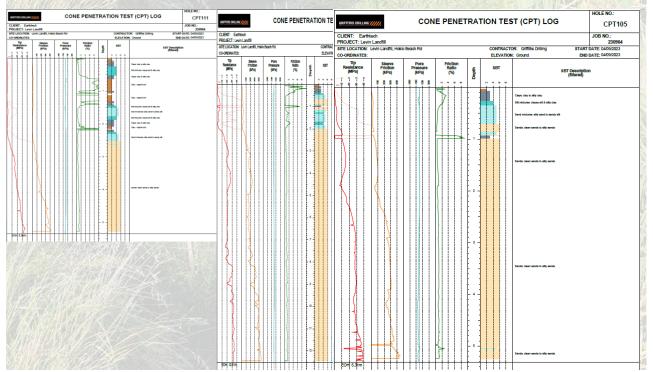
Pilot Plant Design

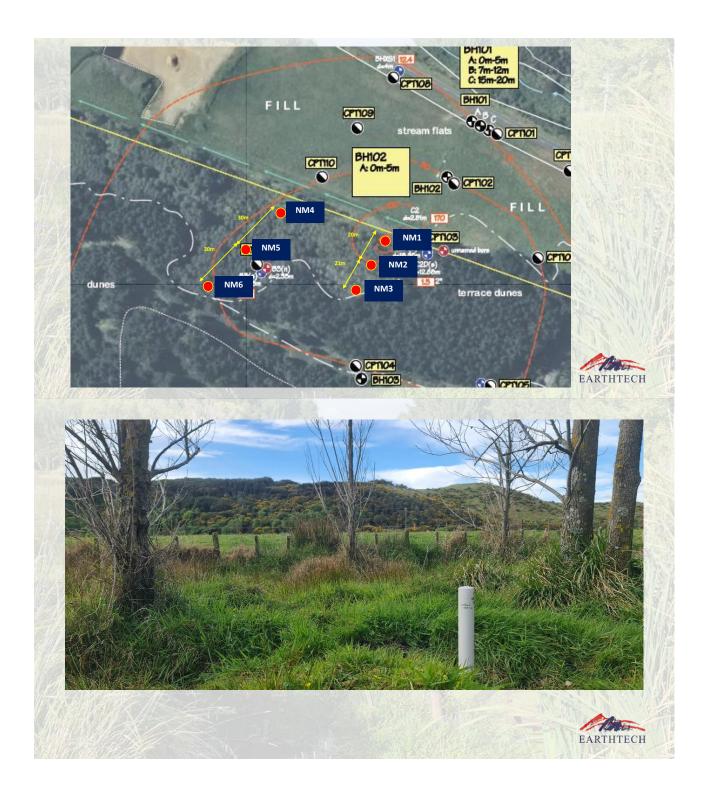
October 2017 Seminar

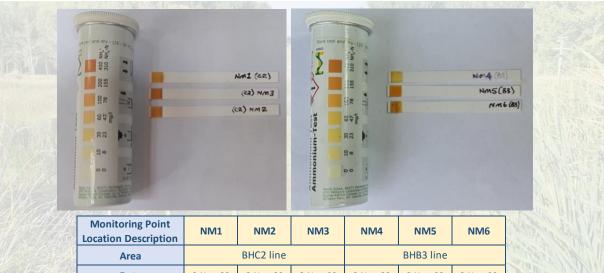



Constructed Reedbed Polishing Treatment

<section-header>

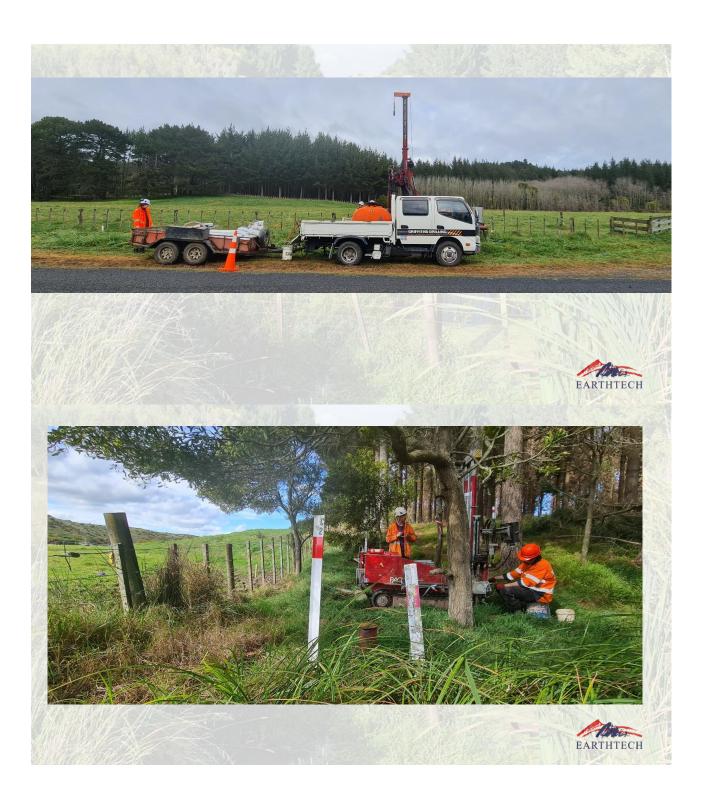





Current Findings

 We're still building up the overall geological / geotechnical picture, but have encountered the following:

CPT no.	Refusal Depth (m)	CPT no.	Refusal Depth (m)	CPT no.	Refusal Depth (m)		
Drilled 4 Sep	tember 2023	Drilled 5 Se	ptember 2023	Drilled 6 September 2023			
CPT103	12.5	CPT101	10	CPT112	12.5		
CPT104	5.8	CPT102	9.8	CPT110	11.0		
CPT105	CPT105 5.3		5.3	CPT109	16.0		
CPT111 5.3		CPT107	16.3	CPT108	11.0		



6-Nov-23 6-Nov-23 6-Nov-23 6-Nov-23 6-Nov-23 6-Nov-23 Date EC (µmS/cm) 1212 1277 2095 924 1077 1420 EC (mS/m) 121.2 127.7 209.5 92.4 107.7 142 NH₄-N (mg/l) 300 380 120 110 160 350

Thank you everyone for listening Tēnā koutou katoa

Questions / Nga patai?

Deanna mentioned that this was the best presentation that she has ever seen from a hydrologist or anybody that deals with water, including ground water. Thanks on behalf of the Lake Trust.

Parekura thanked Lindsay for the presentation.

Landfill Visits

Hikoi Te Whenua

Reflection on the Hikoi te Whenua at Levin Landfill. Parekura thanked everyone that came. Thanks to John Turkington who took good care of the NLG members on site. Charles mentioned that David also took care of the members.

Archaeologist Visit

Mention of the Archaeologist Visit on site so everyone is informed of the activities at Levin Landfill.

Turkington Field-day

Deanna complimented John Turkington and the team for how they left the site. The midden site were left in excellent condition. Noted that you could barely tell where the middens are and it was a brilliant job.

Matters Arising

Charles mentioned that he had matters arising but due to the time constraint he would hold off until the next official meeting.

Viv mentioned water testing bores on site.

Action: HDC will respond to Viv via text message.

Introduction to the new staff members; Campbell Dodds, Horizons Regional Council and Scott Wardlaw, Horowhenua District Council.

Mention of the latest Stantec report.

Action: HDC to email link to Stantec report NLG.

Date for Next NLG Meeting

Tentative date is 23 November 2023, 4:30pm.

Action: HDC to confirm date by Friday 27 October.

Closing and Karakia David closed the meeting with a Karakia.