

This document has been prepared for the benefit of Horowhenua District Council. No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other person.

This disclaimer shall apply notwithstanding that the report may be made available to Horizons Regional Council and other persons for an application for permission or approval to fulfil a legal requirement.

QUALITY STATEMENT

PROJECT TECHNICAL LEAD PROJECT MANAGER

Roger Hulme Phil Landmark

PREPARED BY

Jmon Bre Jandnesk Phil Landmark/Julia O'Brien 20/11/2020

CHECKED BY

23/11/2020 Phil Landmark

REVIEWED BY

PHULT. Paul Heveldt 23/11/2020

APPROVED FOR ISSUE BY

09/12/2020 Roger Hulme

PALMERSTON NORTH

118 Fitzherbert Avenue, Palmerston North 4410 PO Box 13-052, Armagh, Christchurch 8141 TEL +64 6 357 4034,

REVISION SCHEDULE

Rev			Signature or Typed Name (documentation on file)						
No. Date		Description	Prepared by	Checked by	Reviewed by	Approved by			
0	19/11/2020	Draft for internal review	Julia O'Brien	Phil Landmark	Paul Heveldt	Roger Hulme			
1	09/12/2020	Final	Phil Landmark & Julia O'Brien	Phil Landmark	Paul Heveldt	Roger Hulme			

Executive Summary

Horowhenua District Council (HDC) is required to carry out quarterly compliance monitoring of groundwater and monthly sampling of most of the surface water locations at the Levin Landfill, as part of the conditions on Resource Consents DP6009, DP6010, DP6011 and DP102259. This report summarises the findings for the monitoring events of the period from August 2020 to October 2020, including results for:

- Background (natural) groundwater
- Landfill leachate
- Groundwater bores within the new landfill and old irrigation area
- Shallow aquifers, down-gradient of the old landfill
- The deep aguifer,
- The Hokio Stream, and
- The Tatana Property drain.

Stantec has reviewed the results of this third quarter monitoring on behalf of HDC.

Monitoring results for other aspects of the landfill operations, such as air quality/odour, stormwater and soil, are reported annually, as per resource consent requirements.

Samples were collected from 23 groundwater bores, the landfill leachate (at a manhole next to the leachate pond) and five surface water sites during the period from August 2020 to October 2020 from around and on the Levin Landfill, and were analysed for the parameters set out in Discharge Permit 6010.

The October 2020 samples were collected progressively over a 15-day period, which is a longer period than the normally accepted 7 days. Extending the sampling timeframe means that there is less confidence in comparing results from different parts of the site.

The resource consent for the landfill (namely discharge permit 6010) contains compliance limits for the quality of deeper and shallow groundwater which are based upon the Drinking Water Standards for New Zealand – Maximum Acceptable Values (DWSNZ MAVs), Guideline Values for aesthetic determinants (DWSNZ GVs), and the ANZECC 2000 Livestock Drinking Water (ANZECC LDW) trigger values respectively. Compliance limits for surface water are based on the ANZECC 2000 Aquatic Ecosystems (ANZECC AE) 95% trigger values, as provided under the revised Resource Consent Condition approved in December 2019.

The August 2020 to October 2020 monitoring results have been assessed against these limits, where they are applicable.

Twenty-two non-compliances with resource consent conditions were recorded at seven individual monitoring locations, as follows:

- Exceedance of the ANZECC LDW trigger value for nitrate-N (at bore B2) in the shallow aquifer. Nitrate-N is usually elevated for this bore, but not to the extent seen this sampling round (94.4 mg/L).
- Exceedance of the DWSNZ MAV for manganese (at bores C2DD and E2D) in the deep gravel aquifer. This is a normal occurrence for bore C2DD, though unusual for bore E2D.
- The ANZECC AE 95% trigger values for nitrate-N, ammoniacal-N, and boron were exceeded at the Tatana Property drain (TD1).
- The ANZECC AE 95% trigger value for dissolved copper was exceeded at four monitoring locations within Hokio Stream (HS1A (new), HS1, HS2, and HS3) during the October 2020 sampling round. These results were slightly higher than normal but are still within the historic range.
- The ANZECC AE 95% trigger value for nitrate-N was exceeded at four monitoring locations within Hokio Stream (HS1A (new), HS1, HS2, and HS3) during the August, September, and October 2020 sampling rounds.

The August 2020 to October 2020 results were also considered in the context of background water quality, both within the groundwater aquifers (shallow and deep bores) and the surface water receiving environment. For example, low pH at background bore G1S, and elevated aluminium and iron

concentrations in the same bore indicate that groundwater could be being impacted by up-gradient activities unrelated to the landfill operations.

Results from a sample of leachate, taken from a manhole next to the leachate pond, were within the range of data obtained from previous monitoring events at the leachate manhole and are generally well below those recorded at typical Class 1 landfills in New Zealand. Mercury contamination was observed at levels below the typical range, which is in keeping with previous results.

Horowhenua District Council

Levin Landfill AUGUST TO OCTOBER 2020 Quarterly Groundwater, Surface Water and Leachate Monitoring Report

CONTENTS

Execu	utive Summary	
1.	Introduction	1
2.	Groundwater and Surface Water Monitoring	1
2.1	Sample Analysis	1
2.2	Background Groundwater Quality	2
2.3	Groundwater Quality Hydraulically Down-Gradient of the New Landfill	3
2.4	Impact of Old Landfill on Groundwater Quality	5
2.5	Groundwater Quality Down-Gradient of the Irrigation Area	8
2.6	Leachate Effluent Results	8
2.7	Tatana Property Drain	9
2.8	Hokio Stream	11
3.	Gas Detection in Monitoring Wells	14
4.	Discussion	14
4.1	Sampling Quality Control and Assurance	14
4.2	Background Groundwater Quality	14
4.3	Shallow Aquifer Groundwater Quality	15
4.4	Deep Aquifer Groundwater Quality	16
4.5	Leachate Effluent	16
4.6	Tatana Property Drain	16
4.7	Hokio Stream	17
4.8	Consent Compliance	17
5.	Conclusions	18

LIST OF TABLES

Table 2-1: Indicator Parameters	2
Table 2-2: Background Monitoring Results for October 2020	
Table 2-3: D-Series and E1S Monitoring Bore Results for October 2020	
Table 2-4: Results for Monitoring Bores within the Deep Aquifer for October 2020	5
Table 2-5: Monitoring Results for Shallow Boreholes Down-Gradient from the Old Landfill for October 2020	0.7
Table 2-6: Results from Monitoring Bores in the Irrigation Area for October 2020	8
Table 2-7: Results from Leachate Effluent Monitoring for August, September and October 2020	9
Table 2-8: Tatana Drain Monitoring Results for October 2020	10
Table 2-9: Hokio Stream Monitoring Results for August, September and October 2020	12

LIST OF FIGURES

Figure 4-1: Ammoniacal Nitrogen Concentrations in Shallow Bores Screened in the Leachate Plume.......16

APPENDICES

Appendix A Site Plans

Appendix B Sampling Schedule
Appendix C Analytical Results

Appendix D Historical Result Graphs

1. Introduction

Horowhenua District Council (HDC) first commissioned Stantec New Zealand (then Montgomery Watson) to carry out environmental reporting for the discharge consent monitoring undertaken at the Levin Landfill site in the early 2000s. Until recently, monitoring has been undertaken every three months at 27 locations, as required by the previous resource consent conditions (namely for discharge permit 6010). These sampling locations consist of 23 boreholes penetrating the sand and gravel aquifers; three surface water sampling locations within Hokio Stream and a leachate sampling point, as shown in the Site Plan in Appendix A. In addition, HDC had agreed to undertake voluntary surface water monitoring at four locations along the Tatana Property drain.

The Levin Landfill site is comprised of two landfills: one old, closed and unlined landfill and one new, lined and active landfill. The new landfill footprint is being developed in stages. The most recent stage is Stage 3C which was developed in 2017, though landfill operations are also now occurring over the top of Stages 1A, 2 and 3C.

The Levin Landfill site is located above two identified aquifers, a shallow sand aquifer and a deeper gravel aquifer. The shallow aquifer is unconfined, has a low to moderate permeability, and flows in a northerly direction. The deeper gravel aquifer is a confined to semi-confined aquifer. Horizons Regional Council hydrology staff advised that 'the general confined groundwater flow direction is towards the west'. Groundwater quality in the area is highly variable because of interaction with peat deposits that are prevalent in the area, localised effects such as from grazing activities, droppings from scavenging birds and from nitrogen-fixing plants such as gorse.

Since July 2010 groundwater has been tested for dissolved metals and nutrients rather than for total concentrations of these parameters.

The review of the resource consent conditions was finalised in December 2019. Changes have been made to some of the surface water and groundwater monitoring conditions and HDC is in the process of acting on all the changes. The sampling that was done in the October 2020 sampling round has been in line with what has been done previously, but different parameters have been applied to assess the surface water sampling results, as required by the new consent conditions.

This report presents the results for the October 2020 quarterly monitoring round.

2. Groundwater and Surface Water Monitoring

2.1 Sample Analysis

Samples were collected by Downer (a contractor to HDC) between 1 and 15 October 2020. Samples were couriered overnight and analysed by Eurofins ELS Ltd in Lower Hutt, Wellington, the following day.

The sampling programme for April 2020 - January 2023 is summarised in the schedule in Appendix B. From July 2019, faecal coliform counts analyses have been included within the indicator and comprehensive analytical suites, as agreed by HDC with the Horizons Regional Council (HRC). This means that faecal coliform counts will be assessed more frequently throughout each year, as compared to past monitoring.

Groundwater samples taken from the boreholes were analysed for the indicator suite of parameters which are outlined in Table 2-1, whilst surface water samples from Hokio Stream, and samples of landfill leachate effluent were analysed for the comprehensive suite of parameters. Surface water samples collected from the Tatana Property drain were analysed based on a specific parameter list that has been included in the reviewed resource consent conditions. From the April 2020 monitoring round onward, sampling of the Tatana Drain will follow the comprehensive and indicator suites of parameters used for other surface water sampling.

Note that, following the revision of the resource consent conditions which were approved in December 2019, soluble carbonaceous BOD_5 (sc BOD_5) and soluble mercury (Hg) have each been added to the indicator and comprehensive suites of parameters, and E. coli to the comprehensive suite of parameters. The sc BOD_5 and E. coli parameters replace BOD_5 and faecal coliforms respectively. Monitoring of these additional parameters has commenced from the April 2020 sampling round.

Table 2-1: Indicator Parameters

Туре	Parameters
Characteristics	pH Electrical Conductivity (EC)
Oxygen demand	Chemical Oxygen Demand (COD), scBOD ₅ ++
Nutrients*	Nitrate nitrogen (NO3-N), Ammoniacal-nitrogen (NH4-N)
Metals*	Aluminium, Iron**, Lead, Manganese, Nickel
Other elements	Boron, Chloride, Sodium**, Mercury++
Biological+	Faecal coliforms

Note:

Note regarding interpretation of results below detection limits

For those chemical constituents which were below laboratory detection limits during the reporting period, the results have been set at 50% of the laboratory detection limit, and a median calculated on this basis. This is standard practice when dealing with chemical concentrations in water. However, the same rule cannot be applied for E. coli in the context of the Levin Landfill.

The laboratory detection limit for E. coli is 4 CFU/100mL (4 Colony Forming Units/100mL). As the resource consent requires that groundwater results for E. coli be compared against the DWSNZ (for compliance), which sets a value of NIL (I.e. 0 CFU/100mL), we have chosen to indicate where E. coli organisms were not detected, rather than calculating a median as we would for chemical constituents (described above). This method has been applied in all instances where E. coli numbers are assessed for compliance with the DWSNZ.

2.2 Background Groundwater Quality

Water quality from the natural background water up-gradient from the landfill site is not subject to any consent conditions. However, for comparison purposes, both the ANZECC LDW trigger values and the DWSNZ guidelines were used to benchmark the quality of water up-gradient from the landfill site.

Groundwater samples were collected from the two background bores situated hydraulically up-gradient from both the new and old landfills to the southeast of the site (bores G1S and G1D, Site Plan, Appendix A). These two bores were constructed in late 2009 to sample background water quality from the two main hydrogeological units.

The results are presented in Table 2-2. Bore F3 is also included in the background table as it is near the southern boundary of the landfill site (and further west) and is unlikely to be impacted by landfill activities. A full laboratory report containing analytical results is presented in Appendix C.

Table 2-2: Background Monitoring Results for October 2020

Determinant	Units	DWSNZ MAV	ANZECC LDW	G1S	G1D	F3
Water level	mBGL	-	-	14.375	14.81	5.56
рН	-	7 to 8.5*	6 to 9	6.6	7	7
Conductivity	m\$/m	-	-	43.5	28.1	23.5
scBOD5	mg/L	-	-	0.5	0.5	0.5
COD	mg/L	-	-	105	7.5	7.5
Faecal coliforms	CFU/100ml	NIL	100	ND	ND	ND
Chloride	mg/L	250*	-	59.1	31.7	21.6

^{*}Analyses performed for nutrients and metals are for dissolved rather than total concentrations.

^{**}Selected bores as per stormwater consent 102559

⁺Faecal coliforms added from July 2019 onwards (see Appendix B)

⁺⁺Soluble carbonaceous BOD₅ (scBOD₅) and Soluble Mercury added as per revised consent conditions for Discharge Permit 6010, December 2019

Determinant	Units	DWSNZ MAV	ANZECC LDW	G1S	G1D	F3
Nitrate-N	mg/L	11.3	90.3	0.005	0.005	2.05
Ammoniacal-N	mg/L	1.17	-	0.04	0.1	0.005
Sodium	mg/L	200*	-	69.6	n/r	26.8
Dissolved Aluminium	mg/L	0.1*	5	0.157	0.001	0.03
Dissolved Boron	mg/L	1.4	5	0.015	0.04	0.015
Dissolved Iron	mg/L	0.2*	-	3.34	n/r	0.01
Dissolved Lead	mg/L	0.01	0.1	0.00025	0.00025	0.00025
Dissolved Manganese	mg/L	0.4	-	0.176	0.0616	0.00025
Dissolved Mercury	mg/L	0.007	0.002	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	0.08	1	0.0016	0.00025	0.00025

Notes:

Bold – denotes an exceedance of the relevant DWSNZ guidelines

All `<' values have been reported as half the detection limit for statistical purposes and are expressed in italics 'ND' indicates where E. coli were not detected

n/r - not required to be tested during this monitoring period

The results in Table 2-2 indicate that all background bores (G1S, G1D and F3) contain groundwater that has concentrations of all monitored parameters within the ANZECC LDW trigger values.

There were two exceedances of the DWSNZ limits during the October 2020 monitoring round for dissolved iron and aluminium at G1S. It is also noted that the pH level for GIS (6.6) is below the DWSNZ range of 7-8.5.

It is noted that bores G1S and G1D are background bores and therefore any exceedances of the DWSNZ in these bores do not constitute non-compliances with the consent conditions.

2.3 Groundwater Quality Hydraulically Down-Gradient of the New Landfill

Monitoring is carried out within the two main hydrogeological units for bores hydraulically up-gradient of the old landfill and hydraulically down-gradient of the new landfill respectively.

2.3.1 Shallow Aquifer

Bores D1, D2, D3(r), D4, D5, D6 and E1S (Refer to Site Plan, Appendix A) are located hydraulically upgradient of the old landfill, but down-gradient of the new landfill. This means they are not influenced by potential leaching from the old landfill and can act as a warning system for any leaching from the new landfill. Borehole D4 is likely to show evidence of any leaching from the new landfill. Borehole D5 is located at the south western corner of the site and is expected to provide an indication of shallow background groundwater quality because it is unlikely to be influenced by either landfill. It is unlikely that leachate from the new landfill will significantly affect groundwater quality due to the leachate collection system which is in place at the new landfill; however, these bores would still give early warning of any potential problems.

The results from the October 2020 monitoring round for these bores are presented in Table 2-3. The results have been compared with the ANZECC LDW trigger values as per the consent conditions. The full laboratory report is included in Appendix C.

There were no **exceedances of the resource consent conditions** during the October 2020 monitoring round.

^{*}denotes guideline values for aesthetic determinants (G.V.)

[#] copper trigger values range from 0.4 mg/L for sheep, up to 5 mg/L for poultry

Table 2-3: D-Series and E1S Monitoring Bore Results for October 2020

Determinant	Units	ANZECC LDW	D1	D2	D3(r)	D4	D5	D6	E1S
Water level	mBGL	-	16.92	21.58	4.94	8.28	10.075	16.5	11.51
рН	-	6 to 9	6.6	6.4	6.7	6.8	7	6.7	6.8
Conductivity	mS/m	-	49.6	34.4	22.1	31.1	29.4	44.7	27.4
scBOD5	mg/L	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5
COD	mg/L	-	7.5	40	7.5	7.5	50	7.5	19
Faecal coliforms	CFU/100ml	100	ND						
Chloride	mg/L	-	28.2	31.5	22.1	44.3	54.8	20.9	27.8
Nitrate-N	mg/L	90.3	10.9	0.02	0.19	0.005	1.64	21.2	0.005
Ammoniacal-N	mg/L	-	0.005	0.49	0.16	0.25	0.005	0.005	0.23
Sodium	mg/L	-	n/r	30.6	25.3	32	n/r	n/r	26.8
Dissolved Aluminium	mg/L	5	0.001	0.015	0.001	0.001	0.001	0.001	0.007
Dissolved Boron	mg/L	5	0.05	0.06	0.04	0.04	0.03	0.06	0.015
Dissolved Iron	mg/L	-	n/r	9.28	1.05	0.43	n/r	n/r	4.83
Dissolved Lead	mg/L	0.1	0.00025	0.0028	0.00025	0.00025	0.00025	0.00025	0.0018
Dissolved Manganese	mg/L	-	0.00025	0.317	0.184	0.201	0.0149	0.00025	0.241
Dissolved Mercury	mg/L	0.002	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	1	0.00025	0.00025	0.00025	0.00025	0.0007	0.00025	0.00025

Notes:

All `<' values have been reported as half the detection limit for statistical purposes and are expressed in italics # copper trigger values range from 0.4 mg/L for sheep, up to 5 mg/L for poultry

n/r - not required to be tested during this monitoring period

^{&#}x27;ND' indicates where E. coli were not detected

2.3.2 Deep Gravel Aquifer

Bores E1D, C2DD, E2D and G1D all penetrate the deeper gravel aquifer. Deep groundwater flow is assumed to be towards the northwest. Boreholes E2D and C2DD are located to the north-northwest of both the landfills and are therefore considered to be hydraulically down gradient of both landfills. Borehole E1D is located to the southwest of the old landfill and it is therefore considered that this bore would be unlikely to be affected by either landfill.

Results for the October 2020 compliance monitoring round are presented in Table 2-4. The results have been compared with the DWSNZ as per the requirements of discharge consent 6010. The full laboratory report is included in Appendix C.

Table 2-4: Results for Monitoring Bores within the Deep Aquifer for October 2020

Determinant	Units	DWSNZ MAV	E1D	C2DD	E2D
Water level	mBGL	-	11.39	2.38	4.765
рН	-	7 to 8.5*	7.5	7.4	7.3
Conductivity	m\$/m	-	44.9	53.3	44.8
scBOD5	mg/L	-	0.5	0.5	0.5
COD	mg/L	-	18	34	7.5
Faecal coliforms	CFU/100ml	NIL	ND	ND	ND
Chloride	mg/L	250*	39.2	38.8	40.6
Nitrate-N	mg/L	11.3	0.005	0.005	0.005
Ammonia-N	mg/L	1.17	0.22	0.32	0.26
Sodium	mg/L	200*	36	n/r	n/r
Dissolved Aluminium	mg/L	0.1*	0.001	0.023	0.001
Dissolved Boron	mg/L	1.4	0.05	0.06	0.06
Dissolved Iron	mg/L	0.2*	0.03	n/r	n/r
Dissolved Lead	mg/L	0.01	0.00025	0.00025	0.00025
Dissolved Manganese	mg/L	0.4	0.24	0.627	0.402
Dissolved Mercury	mg/L	0.007	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	0.08	0.00025	0.00025	0.00025

Notes:

Bold – denotes an exceedance of the relevant DWSNZ (2008) standard

All `<' values have been reported as half the detection limit for statistical purposes and are expressed in italics n/r – not required to be tested during this monitoring period

There were **two exceedances of the resource consent conditions** in samples from the deep gravel aquifer during the October 2020 sampling round, i.e.

 Dissolved manganese concentrations in bores C2DD and E2D were marginally above the DWSNZ MAV.

Please note, even though these exceedances are considered marginal, the value for bore C2DD is within the historical ranges. E2D is observed at the higher end of the historical range.

2.4 Impact of Old Landfill on Groundwater Quality

Water sampling is carried out to characterise the groundwater quality in a series of shallow bores situated hydraulically down-gradient from the old unlined landfill. The Series B boreholes are located within 50 m of the old landfill in a line along its northern edge. The Series C boreholes are located further down the hydraulic gradient from the old landfill towards Hokio Beach Road to detect whether leachate is moving

^{*} denotes guideline values for aesthetic determinants (G.V.)

^{&#}x27;ND' indicates where E. coli were not detected

off site. Borehole E2S is located northwest of the old landfill to detect any leachate moving directly towards the nearest house down-stream of the site. Bore G2S was installed in late 2009 and is located to the north of the landfill site, hydraulically down-gradient of the old landfill by Hokio Road and the entrance road to the landfill (See Site Plan, Appendix A).

The results from the October 2020 consent monitoring round for these bores are presented in Table 2-5 and have been compared with the ANZECC LDW trigger values as per the discharge consent 6010. The full laboratory report is included in Appendix C.

There was one exceedance of the ANZECC LDW trigger values during the October 2020 monitoring round at B2 for Nitrate-N contamination. Therefore, these **results show one non-compliance with the resource consent conditions**.

The Nitrate-N exceedance at B2 is noted as being higher than historical ranges but is less than what was recorded in the last monitoring round.

Table 2-5: Monitoring Results for Shallow Boreholes Down-Gradient from the Old Landfill for October 2020

Determinant	Units	ANZECC LDW	E2S	B1	В2	В3	C1	C2	C2DS	G2S
Water level	mBGL	-	5.67	1.96	1.32	0.15	0.02	0.22	2.12	1.8
рН	-	6 to 9	7.5	6.7	6.6	7	6.6	6.9	6.8	7.2
Conductivity	m\$/m	-	36.5	168	223	261	146	239	150	235
scBOD5	mg/L	-	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5
COD	mg/L	-	7.5	90	115	211	81	129	106	66
Faecal coliforms	CFU/100ml	100	ND	ND	8	ND	ND	ND	ND	ND
Chloride	mg/L	-	45.7	264	126	159	283	161	122	584
Nitrate-N	mg/L	90.3	0.005	11.2	94.4	0.05	0.005	0.05	0.05	0.05
Ammoniacal-N	mg/L	-	0.33	7.6	42.7	169	5.64	145	1.3	0.005
Sodium	mg/L	-	31.4	n/r						
Dissolved Aluminium	mg/L	5	0.001	0.005	0.014	0.006	0.018	0.015	0.002	0.001
Dissolved Boron	mg/L	5	0.015	0.69	1.69	1.18	0.72	1.43	0.94	0.95
Dissolved Iron	mg/L	-	0.030	n/r						
Dissolved Lead	mg/L	0.1	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dissolved Manganese	mg/L	-	0.246	9.84	5.02	3.05	0.471	0.0428	2.38	0.201
Dissolved Mercury	mg/L	0.002	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	1	0.00025	0.0019	0.0026	0.009	0.0009	0.0039	0.0023	0.0026

Notes:

Bold – denotes an exceedance of the ANZECC LDW trigger values

All '<' values have been reported as half the detection limit for statistical purposes and are expressed in italics

n/r - not required to be tested during this monitoring period

copper trigger values range from 0.4 mg/L for sheep, up to 5 mg/L for poultry 'ND' indicates where E. coli were not detected

2.5 Groundwater Quality Down-Gradient of the Irrigation Area

The F-series boreholes intersect the shallow aquifer down-gradient of the area that was used to irrigate leachate from 2004 to October 2008. All leachate is now pumped to the Levin Wastewater Treatment Plant. The F1 borehole is located within the area where leachate from the new landfill was irrigated. F2 and F3 boreholes are in an area that was set aside for leachate irrigation but was never used as such. It is expected that bores F2 and F3 would therefore be representative of background groundwater quality.

The results from the F series boreholes are presented in Table 2-6 and have been compared with the ANZECC LDW trigger values, as per the discharge consent 6010. The full laboratory report is included in Appendix C.

There were **no exceedances of the resource consent conditions** during the October 2020 monitoring round.

Table 2-6: Results from Monitoring Bores in the Irrigation Area for October 2020

Determinant	Units	ANZECC LDW	F1	F2	F3
Water level	mBGL	-	8.13	3.1	5.56
рН	-	6 to 9	6.9	7.1	7
Conductivity	m\$/m	-	47.5	21.6	23.5
scBOD5	mg/L	-	0.5	0.5	0.5
COD	mg/L	-	7.5	7.5	7.5
Faecal coliforms	CFU/100ml	100	ND	ND	ND
Chloride	mg/L	-	28.5	21.8	21.6
Nitrate-N	mg/L	90.3	1.64	0.47	2.05
Ammoniacal-N	mg/L	-	0.05	0.005	0.005
Sodium	mg/L	-	n/r	n/r	26.8
Dissolved Aluminium	mg/L	5	0.001	0.001	0.03
Dissolved Boron	mg/L	5	0.03	0.04	0.015
Dissolved Iron	mg/L	-	n/r	n/r	0.01
Dissolved Lead	mg/L	0.1	0.00025	0.00025	0.00025
Dissolved Manganese	mg/L	-	0.0053	0.0017	0.00025
Dissolved Mercury	mg/L	0.002	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	1	0.00025	0.00025	0.00025

Notes:

All `<' values have been reported as half the detection limit for statistical purposes and are expressed in italics n/r – not required to be tested during this monitoring period

2.6 Leachate Effluent Results

Leachate effluent from the landfill is **not subject to any water quality consent conditions**. However, for comparison purposes, typical leachate characteristics for landfills, as published by the Waste Management Institute New Zealand (*Technical Guidelines for Disposal to Land*, August 2018, WasteMINZ), have been compared against the leachate quality monitoring results (*Table 2-7*). The full laboratory report is included in Appendix C. *Table 2-7* shows that the concentrations of monitored parameters for leachate effluent samples collected in August, September, and October 2020 were mostly within the typical ranges

[#] copper trigger values range from 0.4 mg/L for sheep, up to 5 mg/L for poultry

^{&#}x27;ND' indicates where E. coli were not detected

to be expected for this type of landfill. The results for mercury were below the typical leachate range, however this is not considered an issue as the results are not outside the range.

Table 2-7: Results from Leachate Effluent Monitoring for August, September and October 2020

Determinant	Units	Typical Leachate Characteristics*	Leachate Effluent			
		(range)	August	September	October	
рН		5.9 - 8.5	7.8	8.1	7.9	
Suspended Solids	mg/l	-	45	51	92	
Phenol	mg/L	-	0.025	0.025	0.025	
VFA	mg/L	-	2.5	2.5	13	
TOC	mg/L	-	680	547	596	
Alkalinity	mg CaCO3/L	-	6460	5100	5870	
Conductivity	mS/m	308 – 27,900	1460	1280	1360	
COD	mg/L	84 – 5,090	2880	2880	2650	
scBOD5	mg/L	-	96	76	67	
E-Coli	CFU/100mL	-	130	9100	24	
Chloride	mg/L	45 – 2,584	1380	943	973	
Nitrate-N	mg/L	-	0.50	4.48	0.66	
Sulphate	mg/L	-	120	144	76.1	
Ammonia-N	mg/L	3.4 – 1,440	1340	1010	1130	
Hardness	mg CaCO3/L	-	533	483	497	
Calcium	mg/L	-	115	105	108	
Magnesium	mg/L	-	59.8	53.1	54.9	
Potassium	mg/L	-	690	574	642	
Sodium	mg/L	50 – 4,000**	941	716	847	
D.R. Phosphorus	mg/L	-	13.7	8.25	8.74	
Dissolved Aluminium	mg/L	-	0.557	0.377	0.541	
Dissolved Arsenic	mg/L	-	0.29	0.257	0.254	
Dissolved Boron	mg/L	0.54 – 20.1	6.88	5.83	6.64	
Dissolved Cadmium	mg/L	-	0.0001	0.0001	0.0001	
Dissolved Chromium	mg/L	-	0.602	0.5	0.576	
Dissolved Copper	mg/L	-	0.0095	0.0158	0.0142	
Dissolved Iron	mg/L	1.6 – 220	5.86	3.81	4.73	
Dissolved Lead	mg/L	0.001 - 0.42	0.0031	0.0021	0.0034	
Dissolved Manganese	mg/L	0.3 - 45***	1.1	0.96	1.09	
Dissolved Mercury	mg/L	0.2 - 50	0.00025	0.00025	0.00025	
Dissolved Nickel	mg/L	0.02 - 2.05**	0.112	0.0953	0.107	
Dissolved Zinc	mg/L	-	0.104	0.156	0.076	

Notes:

2.7 Tatana Property Drain

A drain is located on the Tatana property (see Site Plan in Appendix A). Since July 2015 HDC has agreed to sample surface water from the drain for a selection of parameters that were set by HRC. Four sampling

^{*} for Class 1-type landfills, Table 5-5, p82, Technical Guidelines for Disposal to Land, WasteMINZ August 2018 (same as Table 4.2 of the CAE Landfill Guidelines 2000, but corrections made to Table 5-5 in line with Table 4.2)

^{**}Data taken from Table 5-4, p81 of the same guideline, for parameters for which no differences in concentrations between the phases of landfill development could be observed

^{***}Data taken from Table 5-4, p81 of the same guideline, for parameters during the methanogenic phase **Bold** – denotes a deviation from the typical leachate characteristics range

points were selected to represent the top of the drain (SW1), middle of the drain (SW2 and SW3) and lower drain (SW4).

The revised consent conditions have now reduced the extent of sampling to one location. This is known as 'TD1' and it is the same sampling location as for the previously denoted 'SW3'.

Results from the October 2020 sampling round are presented in Table 2-8 and have been compared with the ANZECC AE¹ 95% trigger values as per the revised resource consent conditions.

Table 2-8: Tatana Drain Monitoring Results for October 2020

Determinant	Units	ANZECC AE (95%)	TD1 (formerly SW3)
-11			7.4
pH	-	-	7.4
Suspended Solids	mg/l	-	66
Phenol	mg/L	0.320	0.025
VFA	mg/L	-	6
TOC	mg/L	-	44.5
Alkalinity	mg CaCO3/L	-	684
Conductivity	mS/m	-	192
COD	mg/L	-	354
scBOD5	mg/L	2	1
E-Coli	CFU/100ml	-	40
Chloride	mg/L	-	177
Nitrate-N	mg/L	0.16	0.24
Sulphate	mg/L	+	0.62
Ammoniacal-N	mg/L	2.1	57.8
Hardness	mg CaCO3/L	-	405
Calcium	mg/L	-	81.6
Magnesium	mg/L	-	48.7
Potassium	mg/L	-	49.2
Sodium	mg/L	-	134
D.R. Phosphorus	mg/L	-	0.014
Dissolved Aluminium	mg/L	0.055	0.009
Dissolved Arsenic	mg/L	0.024	0.001
Dissolved Boron	mg/L	0.370	1.35
Dissolved Cadmium	mg/L	0.0002	0.0001
Dissolved Chromium (VI)	mg/L	0.001	0.001
Dissolved Copper	mg/L	0.0014	0.0009
Dissolved Iron	mg/L	+	0.312
Dissolved Lead	mg/L	0.0034	0.00025
Dissolved Manganese	mg/L	1.9	0.936
Dissolved Mercury	mg/L	0.0006	0.00025
Dissolved Nickel	mg/L	0.011	0.0039
Dissolved Zinc	mg/L	0.008	0.003

Notes:

Bold – denotes an exceedance of the ANZECC AE 95% protection level trigger values

All '<' values have been reported as half the detection limit for statistical purposes and are expressed in italics

¹Australian and New Zealand Guidelines for Fresh and Marine Water Quality - Aquatic Ecosystems (AE), Australian and New Zealand Environment and Conservation Council (ANZECC), Canberra, Australia, 2000

There were **three exceedance of the resource consent conditions** in samples from the Tatana Drain property at TD1 during the October 2020 sampling round as follows:

- The Nitrate-N concentration was above the ANZECC AE 95% trigger value
- The Ammoniacal-N concentration was above the ANZECC AE 95% trigger value
- The Boron concentration was above the ANZECC AE 95% trigger value

While Nitrate-N exceeds the trigger value, it is noted that this is in fact at the lower end of the historical range.

The exceedance of Ammoniacal-N is higher than historical ranges, and given the sudden change, it is recommended that the location of sampling in the field is confirmed. This is because the results, appear very similar to that of the previous sampling point, SW1.

2.8 Hokio Stream

Surface water grab samples are obtained from Hokio Stream at sites HS1A, HS1, HS2 and HS3 (refer to Appendix A) to investigate whether groundwater containing leachate is having an adverse environmental effect on the stream. Sites HS1A and HS1 are situated up-stream of the old landfill, HS2 is situated alongside the old landfill and up-stream of the Tatana Property Drain discharge, and HS3 is located approximately 50m down-stream of the landfill site property boundary and the Tatana Property Drain discharge. Samples from these monitoring locations on Hokio Stream are analysed for comprehensive parameters every month (as shown in Appendix B).

Results from the August, September, and October 2020 sampling rounds are presented in Table 2-9 and have been compared with the ANZECC AE 95% trigger values as per the revised resource consent conditions.

Monitoring for scBOD5 and soluble mercury concentrations have now been added as per the revised Resource Consent conditions.

The revised conditions have been recently implemented and monitoring of these additional parameters and at the new location commenced during the April 2020 monitoring round.

Table 2-9: Hokio Stream Monitoring Results for August, September and October 2020

		ANZECC	Consent	н	S1A (nev	v)		HS1			HS2			HS3	
Determinant	Units	AE (95%)	Trigger Values (Table C1)	Aug	Sept	Oct	Aug	Sept	Oct	Aug	Sept	Oct	Aug	Sept	Oct
рН	-	-	-	7.5	7.8	7.8	7.5	7.9	7.8	7.5	7.7	7.8	7.5	7.7	7.7
Suspended Solids	mg/l	-	-	12	17	18	14	14	18	12	17	20	9	15	19
Phenol	mg/L	0.320	-	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
VFA	mg/L	-	-	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
TOC	mg/L	-	-	4.6	7.2	8.3	4.7	7.3	8	4.9	7.8	7.9	4.8	7.7	8
Alkalinity	mg CaCO3/L	+	-	43	43	44	43	44	44	46	52	47	46	49	46
Conductivity	mS/m	-	-	23.5	23.6	22.3	23.7	23.7	22.5	24.5	25.9	23	24.4	25.2	23
COD	mg/L	-	-	27	29	35	37	54	34	27	33	31	28	31	32
scBOD5	mg/L	2	Monthly Ave. 2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
E-Coli	CFU/100 ml	-	-	780	100	600	120	150	410	88	120	210	62	60	310
Chloride	mg/L	-	-	23.7	25.5	21.6	23.9	25.0	22.3	24.9	27.1	22.4	24.8	26.4	22.5
Nitrate-N	mg/L	0.16	0.16	1.03	1.05	0.77	1.020	1.020	0.8	1.03	1.03	0.78	1.03	1.010	0.79
Sulphate	mg/L	-	-	21.8	22.7	19.4	21.7	22.0	20	21.5	21.4	19.4	21.4	21.5	19.5
Ammoniacal-N	mg/L	2.1	Max. 2.1 Ave. 0.400	0.040	0.040	0.02	0.060	0.005	0.04	0.10	0.18	0.08	0.09	0.070	0.06
Hardness	mg CaCO3/L	+	-	60	65	62	61	65	60	63	70	60	63	68	62
Calcium	mg/L	-	-	13.0	14.0	13.4	13.1	14.2	12.9	13.7	15.3	12.9	13.7	14.8	13.5
Magnesium	mg/L	-	-	6.66	7.2	7.01	6.79	7.26	6.81	6.98	7.74	6.77	7.00	7.45	6.99
Potassium	mg/L	-	-	2.62	2.87	2.79	2.66	2.91	2.89	2.83	3.52	2.96	2.46	3.21	3.09
Sodium	mg/L	-	-	18.1	18.2	18.7	18.1	18.6	18.3	20.2	19.6	18.4	20.3	18.9	19.1
D.R. Phosphorus	mg/L	-	-	0.0100	0.0025	0.0025	0.010	0.0025	0.0025	0.006	0.0025	0.0025	0.014	0.0025	0.0025
Dissolved Aluminium	mg/L	0.055	Med. 0.055	0.008	0.011	0.022	0.013	0.013	0.017	0.010	0.011	0.02	0.008	0.010	0.022
Dissolved Arsenic	mg/L	0.024	Med. 0.024	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Dissolved Boron	mg/L	0.370	-	0.05	0.05	0.06	0.05	0.05	0.07	0.05	0.06	0.06	0.05	0.05	0.06

Data main and	112	ANZECC	Consent	Н	S1A (nev	v)		HS1			HS2			HS3	
Determinant	Units	AE (95%)	Trigger Values (Table C1)	Aug	Sept	Oct	Aug	Sept	Oct	Aug	Sept	Oct	Aug	Sept	Oct
Dissolved Cadmium	mg/L	0.0002	Med. 0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Dissolved Chromium (VI)	mg/L	0.001	-	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.001
Dissolved Copper	mg/L	0.0014	Med. 0.0014	0.0007	0.0012	0.0016	0.0007	0.0011	0.0017	0.0008	0.0011	0.0015	0.0006	0.0012	0.0015
Dissolved Iron	mg/L	-	-	0.024	0.089	0.065	0.025	0.082	0.041	0.029	0.104	0.043	0.035	0.111	0.069
Dissolved Lead	mg/L	0.0034	Med. 0.0034	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dissolved Manganese	mg/L	1.9	-	0.0145	0.0029	0.0109	0.0154	0.0029	0.0083	0.0227	0.0130	0.0139	0.0216	0.0119	0.0176
Dissolved Mercury	mg/L	0.0006	Med. 0.0006	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dissolved Nickel	mg/L	0.011	Med. 0.011	0.00025	0.0006	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.0005	0.00025
Dissolved Zinc	mg/L	0.008	Med. 0.008	0.001	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.001	0.001	0.001	0.001

Notes:

Bold – denotes an exceedance of the ANZECC AE 95% protection level trigger values
All `<' values have been reported as half the detection limit for statistical purposes and are expressed in italics

There were **sixteen exceedances of the resource consent conditions** in samples from the Hokio Stream during the August, September, and October sampling rounds; these are:

- October 2020 sampling round for dissolved copper from H\$1A (new), H\$1, H\$2, and H\$3.
- August 2020, September 2020, and October 2020 sampling rounds for nitrate-N from HS1A (new), HS1, HS2, and HS3.

It is noted that for both dissolved Copper and Nitrate-N the results are very similar throughout the four sites for each of the monitoring rounds. Given that the upstream samples are similar to the downstream samples, it suggests that any exceedances are not a result of the landfill.

3. Gas Detection in Monitoring Wells

Condition 4 of Discharge Permit 6011 requires that: "...groundwater monitoring wells shall be sampled for landfill gas when groundwater samples are taken from the wells. As a minimum, sampling shall be undertaken for methane, carbon dioxide and oxygen..."

In the past, gas monitoring results were reported in the Annual Report. A recommendation of the 2019-2020 Annual Report is that this should be done every quarter so that if any results are unusually high, that appropriate action can be undertaken, including putting safeguards in place at bores.

Appendix E summarises the results of gas testing undertaken on 01 October 2020.

Methane was detected in trace amounts in 10 of the 23 groundwater monitoring bores.

The highest recorded level was 0.08% in Bore E2D, which is 800ppm and is 62 times below the lower explosive limit.

4. Discussion

4.1 Sampling Quality Control and Assurance

The landfill extends over a significant area and there are many sampling locations. However, it is important that the length of the sampling period is kept as brief as possible because a sampling period that is too long may make comparisons of results between rounds and individual monitoring locations less valid. This current monitoring round was carried out over a 15-day period between 1 and 15 October 2020. This is a longer timespan than the previous monitoring round which was 14 days. This monitoring period is not close to the recommended period (i.e. obtaining all samples within 7 days) and therefore the results must be interpreted with some caution.

4.2 Background Groundwater Quality

Water quality from the natural background groundwater up-gradient from the landfill site is not subject to any consent conditions.

Results since 2010 from the background bores indicate that low pH values are representative of background water quality in the shallow sand aquifer (G1S) and, during the October 2020 monitoring round, the pH level (6.6.) is slightly below the guideline level of 7 prescribed by DWSNZ MAV. The deeper gravel aquifer (G1D) has a pH that is slightly higher at 7.

Iron concentrations have fluctuated considerably at both the G1S and G1D bores since monitoring began and are occasionally above the DWSNZ GV. During the October 2020 sampling round, iron concentrations at G1S (3.34 mg/L) exceeded the DWSNZ GV of 0.2mg/L but were within the historical results range recorded at this bore. Elevated iron concentrations in groundwater are likely to be related to hydrogeological conditions found at the site and this phenomenon is common in groundwater in this area.

During the October 2020 sampling round, aluminium concentrations were slightly elevated at G1S (0.157 mg/L), and marginally exceeded the DWSNZ GV of 0.1 mg/L.

The monitoring results suggest that the quality of background groundwater may be being impacted by local ground conditions and/or activities up-gradient of the landfill. Background bore G1S consistently records elevated concentrations of a range of parameters and therefore may not be suitable to use as a yardstick of background water quality in the future.

4.3 Shallow Aquifer Groundwater Quality

4.3.1 Hydraulically Up-gradient from the Old Landfill

Sampling results from the October 2020 monitoring round show that water quality in the shallow monitoring bores hydraulically up-gradient from the old landfill complies with the discharge consent conditions.

Bores D1 and D6 are located down gradient of the new landfill, with bore D1 located hydraulically upgradient of the leachate effluent pond and bore D6 located down gradient of the leachate pond. Other leachate indicators such as boron, chloride and ammoniacal nitrogen concentrations at D6 are all consistent with background concentrations and the historical record.

4.3.2 Irrigation Area

Sampling results from all shallow bores located hydraulically down-gradient of the irrigation area² (F series bores) are consistent with historical results and comply with the discharge consent conditions.

Historical trends with respect to the leachate indicators chloride, boron and ammoniacal nitrogen concentrations in the F-series bores are generally stable and do not show any indications of increasing trends. Boron concentrations at F1 have consistently been low and are sometimes below the laboratory detection limit (except for the April 2020 result of 345 mg/L which is considered to be an anomalous result).

4.3.3 Hydraulically Down-gradient from the Old Landfill

During the October 2020 sampling round there was one exceedance of the resource consent conditions for nitrate nitrogen concentrations in bore B2. No other exceedances occurred at the shallower bores.

Bores C1 and G2S are located down gradient of the old landfill to the east. These bores have consistently recorded low concentrations of ammoniacal nitrogen, with G2S often recording concentrations below the detection limit.

Bores B1, B2, B3 and C2 all appear to be located and screened within the leachate plume and consistently show significantly elevated concentrations of ammoniacal nitrogen. Historical results for all four bores are plotted in Figure 4-1 below. It is noted that the concentration of ammoniacal nitrogen in bore C2 has been increasing since 2009, while the concentration in B1 has fallen. It is possible that the leachate plume flow direction has "shifted", as a result of flow in one area (or direction) being slower than in others, resulting in a time lag for flow to pass some of the bores. This may have resulted in a different spatial distribution of results from that being observed five years ago.

² Irrigation of leachate within this area ceased in October 2008

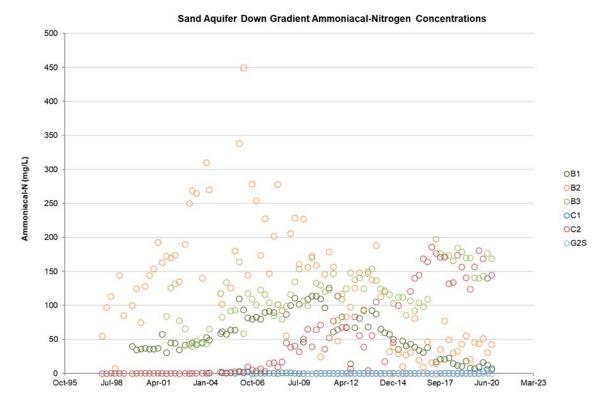


Figure 4-1: Ammoniacal Nitrogen Concentrations in Shallow Bores Screened in the Leachate Plume

Other key leachate indicators, boron, conductivity and chloride are also all elevated in concentrations within the bores that are located and screened in the leachate plume, as would be expected.

The leachate plume appears to have a confined radius northward and is not extending to the north-west or the north-east. The leachate plume width was estimated to be 300-500m in 2014.

4.4 Deep Aquifer Groundwater Quality

The concentration of manganese exceeded the DWSNZ MAV at C2DD and E2D within the deep gravel aquifer in the October 2020 monitoring round. However, it is noted that the manganese concentration at C2DD (0.6 mg/L) was consistent with historical results and is representative of background groundwater quality in the area. E2D showed a manganese concentration of 0.402 mg/L which marginally exceeds the DWSNZ MAV limit of 0.4 mg/L. The E2D October 2020 manganese result is significantly higher than historical results and is therefore considered to be an anomaly. The result for this parameter should be scrutinised in the monitoring results of the next quarterly report.

4.5 Leachate Effluent

Monitoring results from the leachate effluent samples are not required to meet either the ANZECC LDW trigger values or DWSNZ standards. Most of the results from the August, September, and October 2020 monitoring round were within the typical composition ranges for Class 1 landfills published in the WasteMINZ guidelines³. The only exception to this was for mercury which was below the typical range and therefore not of concern.

4.6 Tatana Property Drain

Under the revised resource consent conditions approved in December 2019, monitoring location 'SW3' is now re-designated as 'TD1', and sampling at locations 'SW2', 'SW3' and 'SW4' has been discontinued.

Under the revised conditions, the Tatana Property drain samples are now assessed against the ANZECC AE 95% trigger values.

_

³ Technical Guidelines for Disposal to Land, WasteMINZ, 2018

During this October 2020 monitoring period, there were three exceedances of the resource consent conditions in samples from the Tatana Drain property at TD1 where the nitrate-N, ammoniacal-N, and boron concentrations exceeded the ANZECC AE 95% value.

The conditions exceedance of the ammoniacal-N concentration is similar to the last monitoring period and differs significantly from historical trends. This may be the result of a change of site activities (e.g. stock grazing in the paddock) and it is recommended that this contaminant is closely monitored in the next quarterly report.

The conditions exceedance of the nitrate-N concentration is in keeping with historical trends and suggests the more elevated level observed during the last monitoring round was an anomaly. It is recommended that this contaminant is closely monitored in the next quarterly report.

The conditions exceedance observed for boron is at a higher concentration than was observed in the April 2020 and July 2020 monitoring rounds. However, as this contaminant has not been assessed for the Tatana Drain property at TD1 before, it is too soon to understand if this is anomalous. It is therefore recommended that this is checked in the next monitoring round.

It is also noted that, during the October 2020 sampling round, the concentrations of the following parameters were the higher than for previous sampling rounds. These were; conductivity, ammoniacal-N, hardness, calcium, magnesium, potassium, sodium, dissolved boron, dissolved chromium, dissolved copper, dissolved manganese, dissolved nickel, and dissolved zinc.

It is important to note however that these particular parameters were only recently included in monitoring suite and, therefore, knowledge about their trends is yet to be established.

4.7 Hokio Stream

Under the revised resource consent conditions, a new monitoring location (HS1A), upstream of HS1, was added to the Hokio Stream monitoring sites.

Under the revised conditions, the monitoring results for the Hokio Stream samples are now assessed against the ANZECC AE 95% trigger values.

During the August, September and October 2020 monitoring rounds, there were sixteen exceedances of the resource consent conditions in samples from the Hokio Stream where:

- The Dissolved copper concentration marginally exceeded the ANZECC AE 95% trigger value at H\$1A (new), H\$1, H\$2, and H\$3 in the October 2020 sampling round.
- The Nitrate-N concentration exceeded the ANZECC AE 95% trigger value at HS1A (new), HS1, HS2, and HS3 during the August, September, and October 2020 sampling rounds.

4.8 Consent Compliance

Discharge permit 6010 states that quarterly and annual monitoring results should comply with the ANZECC LDW trigger values in the shallow groundwater aquifer (sand aquifer) and surface water bodies. Samples from the deep groundwater (gravel aquifer) should comply with the DWSNZ. Should any parameters exceed these standards, the permit holder shall report to the Regional Council as soon as practicable on the significance of the results and, where the change can be attributed to the influence of landfill leachate, consult with the Regional Council to determine if further investigations or remedial measures are required.

Shallow aquifer

There was **one exceedance** of the resource consent conditions during the October 2020 sampling round for samples obtained from the shallow aquifer:

• The Nitrate-N concentration in bore B2 exceeded the ANZECC LDW trigger value.

Deeper gravel aquifer

There were **two exceedances** of the resource consent conditions in samples from the deep gravel aquifer during the October 2020 sampling round:

The Manganese concentrations in bores C2DD and E2D exceeded the DWSNZ MAV.

<u>Irrigation area</u>

There were **no exceedances** of the resource consent conditions during the October 2020 sampling round for samples obtained from the irrigation area.

Tatana Property drain

There were **three exceedances** of the resource consent conditions during the October 2020 sampling round for samples obtained from the Tatana Drain sampling location at TD1:

- The Nitrate-N concentration exceeded the ANZECC AE 95% trigger value
- The Ammoniacal-N concentration exceeded the ANZECC AE 95% trigger value
- The Boron concentration exceeded the ANZECC AE 95% trigger value

Hokio Stream

There were **sixteen exceedances** of the resource consent conditions during the August, September and October 2020 sampling rounds for samples obtained from the Hokio Stream:

- The Dissolved copper concentrations marginally exceeded the ANZECC AE 95% trigger value at HS1A (new), HS1, HS2, and HS3 in the October 2020 sampling round.
- The Nitrate-N concentrations exceeded the ANZECC AE 95% trigger value at HS1A (new), HS1, HS2, and HS3 during the August, September, and October 2020 sampling rounds.

As discussed previously in the report, these results suggests that any exceedances are not a result of the landfill activities.

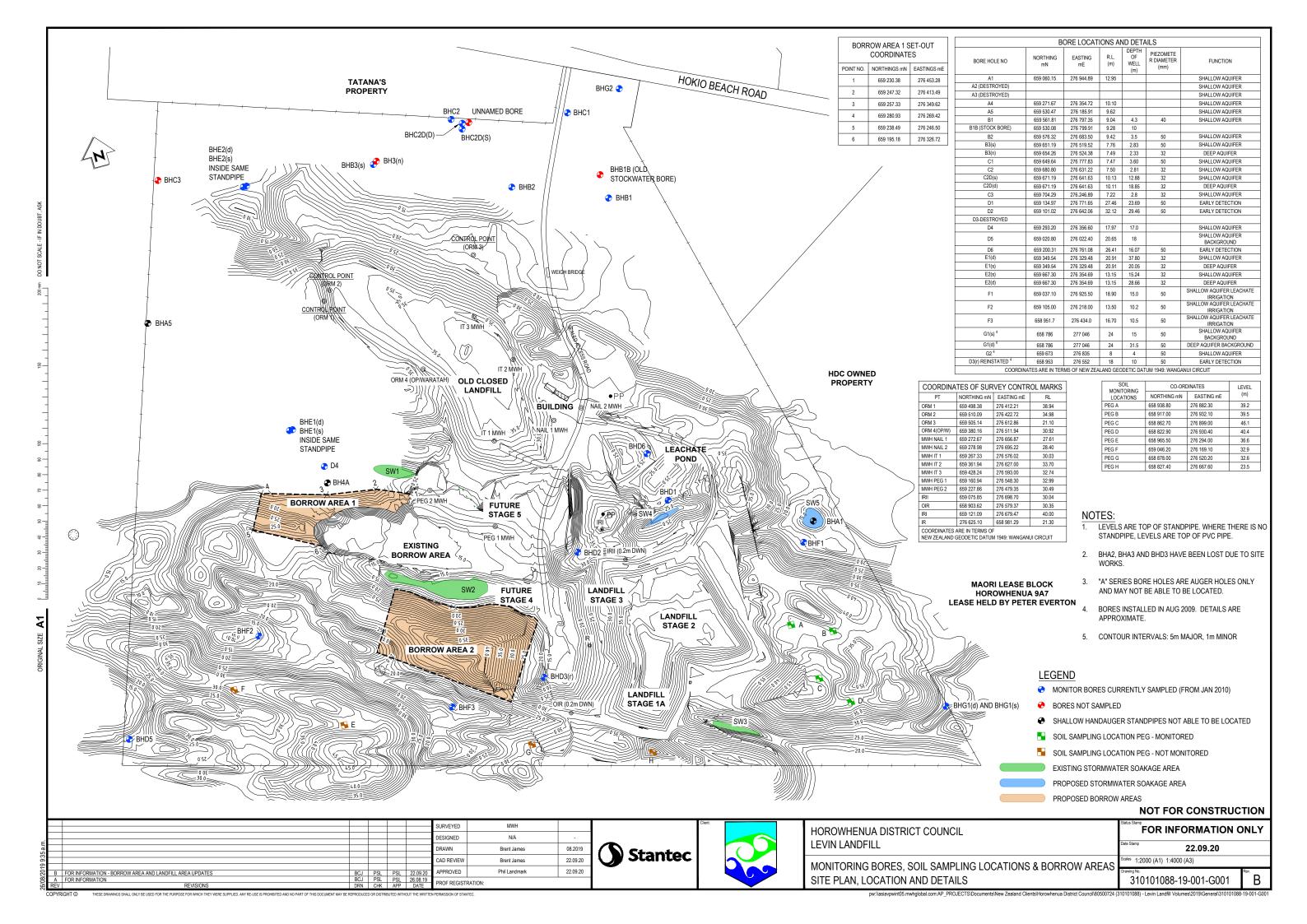
5. Conclusions

Monitoring results obtained in the August 2020 to October 2020 sampling rounds suggest that the groundwater at the background monitoring sites is being impacted by local ground conditions and/or activities up-gradient of the landfill.

During the August 2020 to October 2020 monitoring period there were twenty-two exceedances of the resource consent conditions, as summarised in the following paragraphs.

In October 2020 the shallow-water bore B2 showed a nitrate-N concentration above the ANZECC LDW value.

In October 2020 the deep-water bores C2DD and E2D located immediately down-gradient hydraulically of the old unlined landfill showed manganese concentrations above the DWSNZ MAV.


There were sixteen exceedances of consent limits found in samples from surface water monitoring at the Hokio Stream between August 2020 and October 2020; these were for dissolved copper concentrations at HS1A (new), HS1, HS2, and HS3 in October 2020, and nitrate-N concentrations at HS1A (new), HS1, HS2, and HS3 in August, September and October 2020, with these all showing results above the ANZECC AE 95% trigger values.

Additionally, there were three exceedances of consent limits in samples from surface water monitoring at the Tatana Property drain (TD1) where the nitrate-N, ammoniacal-N, and boron concentrations exceeded the ANZECC AE 95% trigger values.

Appendices

Appendix A Site Plans

Hokio Stream ("HS") and Tatana's Property Drain ("SW") Monitoring Locations

Appendix B Sampling Schedule

LEVIN LANDFILL - SUMMARY OF SURFACE AND GROUNDWATER MONITORING REQUIREMENTS (April 2020 - January 2023).

(The testing regime is based on Consent Conditions following the completion of the 2015 Resource Consent Review process).

			Ta	able A (Co	ondition	3, DP 601	LO)		Table B (Condition 3, DP 6010)							Table C (Condition 3, DP 6010)																		
Reports Du		ampling Month		Deep	Aquifer	Bores									Shallov	v Aquifer	Bores									Irrigatio	n Bores			Hokio	Stream ⁽⁴		Tatana Drain	Leachate - Pond ⁽⁵⁾
Annual Quart	erly	WOILLI	C2dd	E1d	E2d	G1d	Xd1 ⁽¹⁾	C1	C2	C2ds	D4	B1	В2	B3s	E1s	E2s	D1 ⁽²⁾	D2 ⁽²⁾	D3r ⁽²⁾	D6 ⁽²⁾	G1s	G2s	Xs1 ⁽¹⁾	Xs2 ⁽¹⁾	D5 ⁽³⁾	F1 ⁽³⁾	F2 ⁽³⁾	F3 ⁽³⁾	HS1	HS1A	HS2	HS3	TD1	Pond
May	-20	Apr-20	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	2	2	2	2	С	A A
Sep-20 Aug-	20	Jul-20		I + SW	- 1	1	С	- 1	- 1	- 1	I + SW	I	- 1	- 1	I + SW	I + SW	- 1	I + SW	I + SW	I	I + SW	- 1	С	С	1	- 1	- 1	I + SW	or.)	or.	or.	or.		jo
Nov-	-20	Oct-20	-	I + SW	1	1	С	1	- 1	- 1	I + SW	- 1	1	- 1	I + SW	I + SW	- 1	I + SW	I + SW	- 1	I + SW	- 1	С	С	1	1	1	I + SW	×e f	/e f	/e /	> e	С	> o A
Feb-	21	Jan-21	_	I + SW	I	1	С	1	- 1	1	I + SW	- 1	1	- 1	I + SW	I + SW	1	I + SW	I + SW	- 1	I + SW	1	С	С	1		1	I + SW	nthl nsiv ars	nsiv	ithl nsiv	nthl nsiv	1	nthl
May	-21	Apr-21	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	Mont reher Yea	Alor she	Alor she	Alor She Ye	С	Aor ehe
Sep-21 Aug-	21	Jul-21	1	I + SW	- 1	1	С	1	1	1	I + SW	1	-	- 1	I + SW	I + SW	1	I + SW	I + SW	- 1	I + SW	- 1	С	С	1	1	1	I + SW	n pre	ا م pre	ا مور	ام م	I	N ppre
Nov	· 21	Oct-21	1	I + SW	1	1	С	1	1	1	I + SW	1	1	1	I + SW	I + SW	1	I + SW	I + SW	1	I + SW	1	С	С	1	1	1	I + SW	ο̈́	οπ) or	l Ö	С	μο A
Feb-	22	Jan-22	I	I + SW	I	1	С	- 1	- 1	- 1	I + SW	- 1	- 1	I	I + SW	I + SW	- 1	I + SW	I + SW	- 1	I + SW	- 1	С	С	1	I	1	I + SW	J				- 1	
May	-22	Apr-22	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	C + A	ne	С	С	С	С	C + A
Sep-22 Aug-	22	Jul-22	I	I + SW	I	I	I	I	I	I	I + SW	I	I	I	I + SW	I + SW	I	I + SW	I + SW	I	I + SW	I	I	I	1	I	1	I + SW	ntin er 2 ars		I	I	I	I
Nov-	-22	Oct-22	ı	I + SW	I	I	I	I	I	I	I + SW	I	I	I	I + SW	I + SW	1	I + SW	I + SW	I	I + SW	I	1	I	1	I	1	I + SW	afte ye	C	С	С	С	С
Feb-	23	Jan-23	I	I + SW	I	I	I	1	I	I	I + SW	I	I	I	I + SW	I + SW	I	I + SW	I + SW	I	I + SW	I	1		I	I	1	I + SW	Οis	1	I	I	I	1

Measure groundwater level and sample all bores for CH_4 , CO_2 and O_2 each time that groundwater is sampled (Condition 4a of DP 6011)

Notes:

- Bores to be developed by Consent Holder (1)
- See table below
- If irrigation re-commences then the annual sampling is to change from comprehensive + 3 times indicator to bi-annual comprehensive + indicator (Clause D of Condition 3, DP 6010)
- (3)
- See table below
- Comprehensive list (see below)
- Indicator list (see below)
- Pesticide and SVOC analysis
- Add sodium and iron analysis (for stormwater consent 102559)

A reduction in sampling frequency at any **groundwater monitoring point** is conditional on (Clauses A - D of Condition 3, DP 6010):

- A. Completion of the initial monitoring program;
- B. Good consistency of groundwater sample analysis results, or a clearly identified reason for inconsistent results that excludes the contaminant source being landfill operations, stored waste or leachate;
- C. No decline in groundwater quality as determined from indicator parameter trends over a period of four consecutive sampling rounds;
- D. If a well being monitored on a conditional frequency becomes non-compliant with condition C, the monitoring frequency for that well should return to the initial monitoring frequency until conditions B and C are again being fulfilled.

If site management planning indicates any early detection monitoring well is likely to become buried or otherwise destroyed within the following year as a result of normal operations (Clauses E - H, Condition 3, DP 6010):

- E. This must be communicated to the regional council;
- F. A replacement well is to be constructed in a position agreed upon with Horizons Regional Council
- G. The replacement well should be installed in a position suitable to act as a early detection well and be classed as an early detection well;
- H. The replacement well should be constructed as a nested well (or two separate wells) with screens positioned in both shallow and deep aquifers.

A reduction in sampling frequency at the Hokio Stream monitoring locations (HS1A, HS2 and HS3) is conditional on (Clauses I - L, Condition 3 of DP 6010):

- I. No signficant increases in the concentrations between monitoring sites HS1A and HS3, for parameters exceeding the trigger values contained in Table C1 at Site HS3.
- J. A statistical analysis approach is to be used to determine if there is a significant increase in contaminant levels between HS1A and HS3.
- K. Following the 24 month monitoring period, there shall be no significant increases in concentrations between monitoring sites HS1A and HS3.
- L. If the Hokio Stream monitoring locations are being sampled on a conditional frequency and do not meet conditions (HS1A, HS2 and HS3) shall return to the base case intensive monitoring until conditions J and K are again being fulfilled.

A reduction in sampling frequency at the <u>leachate pond outlet</u> is conditional on (Clauses M - P, Condition 3, DP 6010):

- M. Completion of the initial 2 year monitoring program;
- N. Good consistency of water sample analysis results, or a clearly identified reason for inconsistent results;
- O. No decline in water quality over a period of four consecutive sampling rounds;
- P. If the leachate pond outlet is being sampled on a conditional frequency and becomes non-compliant with condition O, the monitoring frequency should return to the base case intensive monitoring until conditions N and O are again being fulfilled.

COMPREHENSIVE PARAMETER LIST (Table E of Condition 3, DP 6010)

	рН					
Characterising	electrical conductivity (EC)					
Characterising	alkalinity					
parameters	total hardness					
	suspended solids					
Oxygen demand	COD and scBOD ₅					
Nutrients*	NO3-N, NH4-N, DRP and SO_4					
Metals*	Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn and Hg					
Other elements	B, Ca, Cl, K and Na					
Organics	Total organic carbon, total phenols, volatile acids					
Biological	E. coli					

^{*} Analyses performed for nutrients and metals are for dissolved rather than total concentrations

INDICATOR PARAMETER LIST (Table F, Condition 3, DP 6010)

haracterising	рН
arameters	electrical conductivity (EC)
xygen demand	COD and scBOD ₅
utrients*	NO3-N and NH4-N
1etals*	AL, Mn, Ni, Pb and Hg
ther elements	B and Cl
iological [†]	E. coli

^{*} Analyses performed for nutrients and metals are for dissolved rather than total concentrations

[†] E. coli added from April 2019 sampling onwards

Appendix C Analytical Results

Eurofins ELS Limited

Analytical Report

Report Number: 20/27962 Issue: 1

28 August 2020

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Sample 20/27962 Notes: 18	Site -01 Levin Leachate F 5277-0 Levin Landfill Sample	Pond	Map Ref.	Date Sampled 11/08/2020 00:00		Received 2020 15:03	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.8			11/08/2020	Gordon Mc	Arthur KTP
0002	Suspended Solids - Total	45	g/m³		12/08/2020	Marylou Ca	
0040	Total (NP) Organic Carbon	680	g/m³		12/08/2020	Amit Kumar	
0052	Alkalinity - Total	6,460	g CaCO3/m³		12/08/2020	Marylou Ca	bral KTP
0055	Conductivity at 25°C	1,460	mS/m		11/08/2020	Gordon Mc	Arthur KTP
0081	Chemical Oxygen Demand	2,880	g/m³		13/08/2020	Gordon Mc	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	96	g/m³		12/08/2020	Marylou Ca	bral KTP
0602	Chloride	1,380	g/m³		14/08/2020	Amit Kumar	KTP
0605	Nitrate - Nitrogen	< 1.00	g/m³		14/08/2020	Amit Kumar	KTP
0607	Sulphate	120	g/m³		14/08/2020	Amit Kumar	KTP
0760	Ammonia Nitrogen	1,340	g/m³		12/08/2020	Athena Cao	KTP
1642	Total Hardness	533	g CaCO3/m³		12/08/2020	Shuyu Zhao	KTP
1810	Calcium - Dissolved	115	g/m³		12/08/2020	Shuyu Zhao	KTP
1819	Iron - Dissolved	5.86	g/m³		12/08/2020	Shuyu Zhao	KTP
1822	Magnesium - Dissolved	59.8	g/m³		12/08/2020	Shuyu Zhao	KTP
1834	Sodium - Dissolved	941	g/m³		12/08/2020	Shuyu Zhao	KTP
2088	Dissolved Reactive Phosphoru	s13.7	g/m³		12/08/2020	Athena Cao	KTP
6701	Aluminium - Dissolved	0.557	g/m³		17/08/2020	Shanel Kum	nar KTP
6703	Arsenic - Dissolved	0.290	g/m³		17/08/2020	Shanel Kum	nar KTP
6707	Boron - Dissolved	6.88	g/m³		20/08/2020	Shanel Kum	nar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/08/2020	Shanel Kum	nar KTP
6711	Chromium - Dissolved	0.602	g/m³		17/08/2020	Shanel Kum	nar KTP
6713	Copper - Dissolved	0.0095	g/m³		17/08/2020	Shanel Kum	nar KTP
6718	Lead - Dissolved	0.0031	g/m³		17/08/2020	Shanel Kum	nar KTP
6721	Manganese - Dissolved	1.10	g/m³		17/08/2020	Shanel Kum	nar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6724	Nickel - Dissolved	0.112	g/m³		17/08/2020	Shanel Kum	nar KTP
6726	Potassium - Dissolved	690	g/m³		20/08/2020	Shanel Kum	nar KTP
6738	Zinc - Dissolved	0.104	g/m³		17/08/2020	Shanel Kum	nar KTP
M0104	E. coli	130	cfu/100mL		11/08/2020	Juana Tama	ayo KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Lizzie Addis	Transcribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Lizzie Addis	Transcribed by
P1859	Sample Filtration	Completed			12/08/2020	Robyn Mad	ge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

rest methodology.		
Test	Methodology	Detection Limit
рН	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/27962-1 ELS 28 August 2020 20:01:37

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification	1 g/m³
	inhibitor.	
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
	equivalent.	
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

Unless otherwise stated, all tests are performed in Wellington.

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Relea

Rob Deacon

Eurofins ELS Limited

Analytical Report

Report Number: 20/27966 Issue: 1

28 August 2020

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Sample 20/27966			Map Ref.	Date Sampled 11/08/2020 00:00		Received 2020 14:47	Order No.
Notes. 16	35281-0 Levin Landfill Sample						
0001	Test	Result	Units		Test Date	Signatory	
0001	pH	7.5			11/08/2020	Marylou Cal	
0002	Suspended Solids - Total	9	g/m³		12/08/2020	Marylou Cal	
0040	Total (NP) Organic Carbon	4.8	g/m³		12/08/2020	Amit Kumar	
0052	Alkalinity - Total	46	g CaCO3/m³		11/08/2020	Marylou Cal	
0055	Conductivity at 25°C	24.4	mS/m		11/08/2020	Marylou Cal	
0081	Chemical Oxygen Demand	28	g/m³		13/08/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		12/08/2020	Marylou Cal	oral KTP
0602	Chloride	24.8	g/m³		10/08/2020	Shanel Kum	
0605	Nitrate - Nitrogen	1.03	g/m³		10/08/2020	Shanel Kum	ar KTP
0607	Sulphate	21.4	g/m³		10/08/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.09	g/m³		12/08/2020	Athena Cao	KTP
1642	Total Hardness	63	g CaCO3/m³		12/08/2020	Shuyu Zhao	KTP
1810	Calcium - Dissolved	13.7	g/m³		12/08/2020	Shuyu Zhao	KTP
1819	Iron - Dissolved	0.035	g/m³		12/08/2020	Shuyu Zhao	KTP
1822	Magnesium - Dissolved	7.00	g/m³		12/08/2020	Shuyu Zhao	KTP
1834	Sodium - Dissolved	20.3	g/m³		12/08/2020	Shuyu Zhao	KTP
2088	Dissolved Reactive Phosphorus	0.014	g/m³		12/08/2020	Athena Cao	KTP
6701	Aluminium - Dissolved	0.008	g/m³		17/08/2020	Shanel Kum	ar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	ar KTP
6707	Boron - Dissolved	0.05	g/m³		17/08/2020	Shanel Kum	ar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/08/2020	Shanel Kum	ar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	ar KTP
6713	Copper - Dissolved	0.0006	g/m³		17/08/2020	Shanel Kum	ar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6721	Manganese - Dissolved	0.0216	g/m³		17/08/2020	Shanel Kum	ar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6726	Potassium - Dissolved	2.46	g/m³		17/08/2020	Shanel Kum	ar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		17/08/2020	Shanel Kum	ar KTP
M0104	E. coli	62	cfu/100mL		11/08/2020	Juana Tama	iyo KTP
MO-5001	Volatile Fatty Acids	< 5 *	g/m³				Transcribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Lizzie Addis	Transcribed by
P1859	Sample Filtration	Completed			12/08/2020	Robyn Mado	је .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

rest methodology.		
Test	Methodology	Detection Limit
рН	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/27966-1 ELS 28 August 2020 20:01:57

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification	1 g/m³
	inhibitor.	
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	lon Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
T	equivalent.	004 / 2
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

Unless otherwise stated, all tests are performed in Wellington.

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Relea

Rob Deacon

Eurofins ELS Limited

Analytical Report

Report Number: 20/27965 Issue: 1

28 August 2020

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Sample 20/27965 Notes: 18	Site -01 Levin HS2 -5280-0 Levin Landfill Sample		Map Ref.	Date Sampled 11/08/2020 00:00		Received 2020 14:45	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	Н	7.5			11/08/2020	Marylou Cal	oral KTP
0002	Suspended Solids - Total	12	g/m³		12/08/2020	Marylou Cal	
0040	Total (NP) Organic Carbon	4.9	g/m³		12/08/2020	Amit Kumar	KTP
0052	Alkalinity - Total	46	g CaCO3/m³		11/08/2020	Marylou Cal	bral KTP
0055	Conductivity at 25°C	24.5	mS/m		11/08/2020	Marylou Cal	oral KTP
0081	Chemical Oxygen Demand	27	g/m³		13/08/2020	Gordon McA	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		12/08/2020	Marylou Cal	bral KTP
0602	Chloride	24.9	g/m³		10/08/2020	Shanel Kum	nar KTP
0605	Nitrate - Nitrogen	1.03	g/m³		10/08/2020	Shanel Kum	nar KTP
0607	Sulphate	21.5	g/m³		10/08/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.10	g/m³		12/08/2020	Athena Cao	KTP
1642	Total Hardness	63	g CaCO3/m³		12/08/2020	Shuyu Zhao	KTP
1810	Calcium - Dissolved	13.7	g/m³		12/08/2020	Shuyu Zhac	KTP
1819	Iron - Dissolved	0.029	g/m³		12/08/2020	Shuyu Zhac	KTP
1822	Magnesium - Dissolved	6.98	g/m³		12/08/2020	Shuyu Zhac	KTP
1834	Sodium - Dissolved	20.2	g/m³		12/08/2020	Shuyu Zhac	KTP
2088	Dissolved Reactive Phosphorus	s0.006	g/m³		12/08/2020	Athena Cao	KTP
6701	Aluminium - Dissolved	0.010	g/m³		17/08/2020	Shanel Kum	nar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	nar KTP
6707	Boron - Dissolved	0.05	g/m³		17/08/2020	Shanel Kum	nar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/08/2020	Shanel Kum	nar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	nar KTP
6713	Copper - Dissolved	0.0008	g/m³		17/08/2020	Shanel Kum	nar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6721	Manganese - Dissolved	0.0227	g/m³		17/08/2020	Shanel Kum	nar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6726	Potassium - Dissolved	2.83	g/m³		17/08/2020	Shanel Kum	nar KTP
6738	Zinc - Dissolved	0.003	g/m³		17/08/2020	Shanel Kum	nar KTP
M0104	E. coli	88	cfu/100mL		11/08/2020	Juana Tama	ayo KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Lizzie Addis	Transcribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Lizzie Addis	Transcribed by
P1859	Sample Filtration	Completed			12/08/2020	Robyn Mad	ge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

rest methodology.		
Test	Methodology	Detection Limit
рН	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/27965-1 ELS 28 August 2020 20:01:53

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification	1 g/m³
	inhibitor.	
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
	equivalent.	
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Relea

Eurofins ELS Limited

Analytical Report

Report Number: 20/27964 Issue: 1

28 August 2020

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Sample 20/27964 Notes: 18	Site -01 Levin HS1A -5279-0 Levin Landfill Sample		Map Ref.	Date Sampled 11/08/2020 00:00		Received 2020 14:54	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pН	7.5			11/08/2020	Marylou Cal	oral KTP
0002	Suspended Solids - Total	12	g/m³		12/08/2020	Marylou Ca	bral KTP
0040	Total (NP) Organic Carbon	4.6	g/m³		12/08/2020	Amit Kumar	KTP
0052	Alkalinity - Total	43	g CaCO3/m³		11/08/2020	Marylou Cal	oral KTP
0055	Conductivity at 25°C	23.5	mS/m		11/08/2020	Marylou Ca	bral KTP
0081	Chemical Oxygen Demand	27	g/m³		13/08/2020	Gordon McA	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		12/08/2020	Marylou Ca	bral KTP
0602	Chloride	23.7	g/m³		10/08/2020	Shanel Kum	nar KTP
0605	Nitrate - Nitrogen	1.03	g/m³		10/08/2020	Shanel Kum	nar KTP
0607	Sulphate	21.8	g/m³		10/08/2020	Shanel Kum	nar KTP
0760	Ammonia Nitrogen	0.04	g/m³		12/08/2020	Athena Cao	KTP
1642	Total Hardness	60	g CaCO3/m³		12/08/2020	Shuyu Zhao	KTP
1810	Calcium - Dissolved	13.0	g/m³		12/08/2020	Shuyu Zhao	KTP
1819	Iron - Dissolved	0.024	g/m³		12/08/2020	Shuyu Zhao	KTP
1822	Magnesium - Dissolved	6.66	g/m³		12/08/2020	Shuyu Zhao	KTP
1834	Sodium - Dissolved	18.1	g/m³		12/08/2020	Shuyu Zhao	KTP
2088	Dissolved Reactive Phosphorus	s0.010	g/m³		12/08/2020	Athena Cao	KTP
6701	Aluminium - Dissolved	0.008	g/m³		17/08/2020	Shanel Kum	ar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	ar KTP
6707	Boron - Dissolved	0.05	g/m³		17/08/2020	Shanel Kum	ar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/08/2020	Shanel Kum	ar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	nar KTP
6713	Copper - Dissolved	0.0007	g/m³		17/08/2020	Shanel Kum	nar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6721	Manganese - Dissolved	0.0145	g/m³		17/08/2020	Shanel Kum	ar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	nar KTP
6726	Potassium - Dissolved	2.62	g/m³		17/08/2020	Shanel Kum	nar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		17/08/2020	Shanel Kum	nar KTP
M0104	E. coli	780	cfu/100mL		11/08/2020	Juana Tama	ayo KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Lizzie Addis	Transcribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Lizzie Addis	Transcribed by
P1859	Sample Filtration	Completed			12/08/2020	Robyn Mad	ge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

rest methodology.		
Test	Methodology	Detection Limit
рН	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/27964-1 ELS 28 August 2020 20:01:48

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification	1 g/m³
	inhibitor.	
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
	equivalent.	
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Relea

Eurofins ELS Limited

Analytical Report

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Report Number: 20/27963 Issue: 1 28 August 2020

Sample 20/27963 Notes: 18	Site -01 Levin HS1 15278-0 Levin Landfill Sample		Map Ref.	Date Sampled 11/08/2020 00:00		Received 2020 15:03	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	На	7.5			11/08/2020	Marylou Cal	oral KTP
0002	Suspended Solids - Total	14	g/m³		12/08/2020	Marylou Cal	
0040	Total (NP) Organic Carbon	4.7	g/m³		12/08/2020	Amit Kumar	KTP
0052	Alkalinity - Total	43	g CaCO3/m³		11/08/2020	Marylou Cal	oral KTP
0055	Conductivity at 25°C	23.7	mS/m		11/08/2020	Marylou Cal	oral KTP
0081	Chemical Oxygen Demand	37	g/m³		13/08/2020	Gordon McA	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		12/08/2020	Marylou Cal	oral KTP
0602	Chloride	23.9	g/m³		10/08/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	1.02	g/m³		10/08/2020	Shanel Kum	ar KTP
0607	Sulphate	21.7	g/m³		10/08/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.06	g/m³		12/08/2020	Athena Cao	KTP
1642	Total Hardness	61	g CaCO3/m³		12/08/2020	Shuyu Zhao	KTP
1810	Calcium - Dissolved	13.1	g/m³		12/08/2020	Shuyu Zhao	KTP
1819	Iron - Dissolved	0.025	g/m³		12/08/2020	Shuyu Zhao	KTP
1822	Magnesium - Dissolved	6.79	g/m³		12/08/2020	Shuyu Zhao	KTP
1834	Sodium - Dissolved	18.1	g/m³		12/08/2020	Shuyu Zhao	KTP
2088	Dissolved Reactive Phosphoru	s0.010	g/m³		12/08/2020	Athena Cao	KTP
6701	Aluminium - Dissolved	0.013	g/m³		17/08/2020	Shanel Kum	ar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	ar KTP
6707	Boron - Dissolved	0.05	g/m³		17/08/2020	Shanel Kum	ar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/08/2020	Shanel Kum	ar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/08/2020	Shanel Kum	ar KTP
6713	Copper - Dissolved	0.0007	g/m³		17/08/2020	Shanel Kum	ar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6721	Manganese - Dissolved	0.0154	g/m³		17/08/2020	Shanel Kum	ar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/08/2020	Shanel Kum	ar KTP
6726	Potassium - Dissolved	2.66	g/m³		17/08/2020	Shanel Kum	ar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		17/08/2020	Shanel Kum	ar KTP
M0104	E. coli	120	cfu/100mL		11/08/2020	Juana Tama	iyo KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Lizzie Addis	Transcribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Lizzie Addis	Transcribed by
P1859	Sample Filtration	Completed			12/08/2020	Robyn Mad	ge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

rest methodology.			
Test	Methodology	Detection Limit	
рН	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1	
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³	
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³	

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/27963-1 ELS 28 August 2020 20:01:43

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and		1 g/m³
	inhibitor.	
Chloride	lon Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	lon Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
	equivalent.	
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Eurofins ELS Limited

Analytical Report

Report Number: 20/34380 Issue: 1

02 October 2020

Downer EDI Levin - Landfill P O Box 642 LEVIN 5540

Attention: Bruce Marshall

Sample 20/34380 Notes: 18	Site -01 Levin Leachate 8556-0 Levin Landfill Sample	Pond	Map Ref.	Date Sampled 15/09/2020 00:00		eceived 2020 09:27	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pH	8.1			16/09/2020	Gordon Mc	Arthur KTP
0002	Suspended Solids - Total	51	g/m³		16/09/2020	Gordon McA	Arthur KTP
0040	Total (NP) Organic Carbon	547	g/m³		18/09/2020	Amit Kumar	KTP
0052	Alkalinity - Total	5,100	g CaCO3/m³		25/09/2020	Gordon McA	Arthur KTP
0055	Conductivity at 25°C	1,280	mS/m		16/09/2020	Gordon McA	Arthur KTP
0081	Chemical Oxygen Demand	2,880	g/m³		16/09/2020	Gordon McA	Arthur KTP
0180	BOD5 - Soluble Carbonaceou	s 76	g/m³		16/09/2020	Marylou Ca	bral KTP
0602	Chloride	943	g/m³		17/09/2020	Divina Laga	zon KTP
0605	Nitrate - Nitrogen	4.48	g/m³		17/09/2020	Divina Laga	zon KTP
0607	Sulphate	144	g/m³		17/09/2020	Divina Laga	zon KTP
0760	Ammonia Nitrogen	1,010	g/m³		22/09/2020	Divina Laga	zon KTP
1642	Total Hardness	483	g CaCO3/m³		16/09/2020	Amit Kumar	KTP
1810	Calcium - Dissolved	105	g/m³		16/09/2020	Amit Kumar	KTP
1819	Iron - Dissolved	3.81	g/m³		16/09/2020	Amit Kumar	KTP
1822	Magnesium - Dissolved	53.1	g/m³		16/09/2020	Amit Kumar	KTP
1834	Sodium - Dissolved	716	g/m³		16/09/2020	Amit Kumar	KTP
2088	Dissolved Reactive Phosphore	us8.25	g/m³		22/09/2020	Divina Laga	zon KTP
6701	Aluminium - Dissolved	0.377	g/m³		16/09/2020	Shanel Kum	nar KTP
6703	Arsenic - Dissolved	0.257	g/m³		16/09/2020	Shanel Kum	nar KTP
6707	Boron - Dissolved	5.83	g/m³		16/09/2020	Shanel Kum	nar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		16/09/2020	Shanel Kum	nar KTP
6711	Chromium - Dissolved	0.500	g/m³		16/09/2020	Shanel Kum	nar KTP
6713	Copper - Dissolved	0.0158	g/m³		16/09/2020	Shanel Kum	nar KTP
6718	Lead - Dissolved	0.0021	g/m³		16/09/2020	Shanel Kum	nar KTP
6721	Manganese - Dissolved	0.959	g/m³		16/09/2020	Shanel Kum	nar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kum	nar KTP
6724	Nickel - Dissolved	0.0953	g/m³		16/09/2020	Shanel Kum	ar KTP
6726	Potassium - Dissolved	574	g/m³		16/09/2020	Shanel Kum	nar KTP
6738	Zinc - Dissolved	0.156	g/m³		16/09/2020	Shanel Kum	nar KTP
M0104	E. coli	9,100	cfu/100mL		16/09/2020	Maria Norris	KTP
MO-5001	Volatile Fatty Acids	< 5 [*]	g/m³			Prashilla Sir	ngh Transcribed
						by	
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Prashilla Sir	ngh Transcribed
						by	
P1859	Sample Filtration	Completed			16/09/2020	Robyn Mad	ge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

• • • • • • • • • • • • • • • • • • • •		
Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2

Report Number: 20/34380-1 ELS

02 October 2020 20:00:47

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification inhibitor.	1 g/m³
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid equivalent.	5 g/m³
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Released By

Eurofins ELS Limited

Analytical Report

Report Number: 20/34384

Issue: 1 02 October 2020

P O Box 642 LEVIN 5540 Attention: Bruce Marshall

Downer EDI Levin - Landfill

Sample 20/34384 Notes: 18	Site -01 Levin HS3 8560-0 Levin Landfill Sample		Map Ref.	Date Sampled 15/09/2020 00:00		eceived 2020 09:27	Order No.
140100. 10	Test	Result	Units		Test Date	Signatory	
0001	pH	7.7			16/09/2020	Gordon McAr	thur KTP
0002	Suspended Solids - Total	15	g/m³		16/09/2020	Gordon McAr	thur KTP
0040	Total (NP) Organic Carbon	7.7	g/m³		18/09/2020	Amit Kumar k	(TP
0052	Alkalinity - Total	49	g CaCO3/m³		16/09/2020	Gordon McAr	thur KTP
0055	Conductivity at 25°C	25.2	mS/m		16/09/2020	Gordon McAr	thur KTP
0081	Chemical Oxygen Demand	31	g/m³		16/09/2020	Gordon McAr	thur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		16/09/2020	Marylou Cabi	ral KTP
0602	Chloride	26.4	g/m³		17/09/2020	Divina Lagaz	on KTP
0605	Nitrate - Nitrogen	1.01	g/m³		17/09/2020	Divina Lagaz	on KTP
0607	Sulphate	21.5	g/m³		17/09/2020	Divina Lagaz	on KTP
0760	Ammonia Nitrogen	0.07	g/m³		22/09/2020	Divina Lagaz	on KTP
1642	Total Hardness	68	g CaCO3/m³		16/09/2020	Amit Kumar k	KTP
1810	Calcium - Dissolved	14.8	g/m³		16/09/2020	Amit Kumar k	KTP
1819	Iron - Dissolved	0.111	g/m³		16/09/2020	Amit Kumar k	KTP
1822	Magnesium - Dissolved	7.45	g/m³		16/09/2020	Amit Kumar k	KTP
1834	Sodium - Dissolved	18.9	g/m³		16/09/2020	Amit Kumar k	KTP
2088	Dissolved Reactive Phosphorus	s< 0.005	g/m³		22/09/2020	Divina Lagaz	on KTP
6701	Aluminium - Dissolved	0.010	g/m³		16/09/2020	Shanel Kuma	ar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kuma	r KTP
6707	Boron - Dissolved	0.05	g/m³		16/09/2020	Shanel Kuma	r KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		16/09/2020	Shanel Kuma	r KTP
6711	Chromium - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kuma	r KTP
6713	Copper - Dissolved	0.0012	g/m³		16/09/2020	Shanel Kuma	ar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kuma	r KTP
6721	Manganese - Dissolved	0.0119	g/m³		16/09/2020	Shanel Kuma	ar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kuma	r KTP
6724	Nickel - Dissolved	0.0005	g/m³		16/09/2020	Shanel Kuma	r KTP
6726	Potassium - Dissolved	3.21	g/m³		16/09/2020	Shanel Kuma	ar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		16/09/2020	Shanel Kuma	r KTP
M0104	E. coli	60	cfu/100mL		16/09/2020	Maria Norris	KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Prashilla Sing	gh Transcribed
						by	
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Prashilla Sing	h Transcribed
						by	
P1859	Sample Filtration	Completed			16/09/2020	Robyn Madge	e .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

0,		
Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016 Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2
Report Number: 20/34384-1 ELS
02 October 2020 20:01:02

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification inhibitor.	1 g/m³
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid equivalent.	5 g/m³
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Released By

P O Box 642

LEVIN 5540

Eurofins ELS Limited

Analytical Report

Issue: 1 07 October 2020

Report Number: 20/34383

Attention: Bruce Marshall

Downer EDI Levin - Landfill

Sample 20/34383 Notes: 18	Site I-01 Levin HS2 I88559-0 Levin Landfill Sample		Map Ref.	Date Sampled 15/09/2020 00:00		eceived 2020 09:27	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.7			16/09/2020	Gordon McArt	hur KTP
0002	Suspended Solids - Total	17	g/m³		16/09/2020	Gordon McArt	hur KTP
0040	Total (NP) Organic Carbon	7.8	g/m³		18/09/2020	Amit Kumar K	TP
0052	Alkalinity - Total	52	g CaCO3/m³		16/09/2020	Gordon McArt	hur KTP
0055	Conductivity at 25°C	25.9	mS/m		16/09/2020	Gordon McArt	hur KTP
0081	Chemical Oxygen Demand	33	g/m³		16/09/2020	Gordon McArt	hur KTP
0180	BOD5 - Soluble Carbonaceous	s < 1	g/m³		16/09/2020	Marylou Cabra	al KTP
0602	Chloride	27.1	g/m³		17/09/2020	Divina Lagazo	n KTP
0605	Nitrate - Nitrogen	1.03	g/m³		17/09/2020	Divina Lagazo	n KTP
0607	Sulphate	21.4	g/m³		17/09/2020	Divina Lagazo	n KTP
0760	Ammonia Nitrogen	0.18	g/m³		22/09/2020	Divina Lagazo	n KTP
1642	Total Hardness	70	g CaCO3/m³		16/09/2020	Amit Kumar K	TP
1810	Calcium - Dissolved	15.3	g/m³		16/09/2020	Amit Kumar K	TP
1819	Iron - Dissolved	0.104	g/m³		16/09/2020	Amit Kumar K	TP
1822	Magnesium - Dissolved	7.74	g/m³		16/09/2020	Amit Kumar K	TP
1834	Sodium - Dissolved	19.6	g/m³		16/09/2020	Amit Kumar K	TP
2088	Dissolved Reactive Phosphorus	s< 0.005	g/m³		22/09/2020	Divina Lagazo	n KTP
6701	Aluminium - Dissolved	0.011	g/m³		16/09/2020	Shuyu Zhao K	TP
6703	Arsenic - Dissolved	< 0.001	g/m³		16/09/2020	Shuyu Zhao K	TP
6707	Boron - Dissolved	0.06	g/m³		16/09/2020	Shuyu Zhao K	TP
6708	Cadmium - Dissolved	< 0.0002	g/m³		16/09/2020	Shuyu Zhao K	TP
6711	Chromium - Dissolved	< 0.001	g/m³		16/09/2020	Shuyu Zhao K	TP
6713	Copper - Dissolved	0.0011	g/m³		16/09/2020	Shuyu Zhao K	TP
6718	Lead - Dissolved	< 0.0005	g/m³		16/09/2020	Shuyu Zhao K	TP
6721	Manganese - Dissolved	0.0130	g/m³		16/09/2020	Shuyu Zhao K	TP
6722	Mercury - Dissolved	< 0.0005	g/m³		16/09/2020	Shuyu Zhao K	TP
6724	Nickel - Dissolved	< 0.0005	g/m³		16/09/2020	Shuyu Zhao K	TP
6726	Potassium - Dissolved	3.52	g/m³		16/09/2020	Shuyu Zhao K	TP
6738	Zinc - Dissolved	< 0.002	g/m³		16/09/2020	Shuyu Zhao K	TP
M0104	E. coli	120	cfu/100mL		16/09/2020	Maria Norris K	TP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Prashilla Singl	h Transcribed
						by	
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Prashilla Singl	n Transcribed
						by	
P1859	Sample Filtration	Completed			16/09/2020	Robyn Madge	

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

0,		
Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/34383-1 ELS 07 October 2020 16:01:40

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification inhibitor.	1 g/m³
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid equivalent.	5 g/m³
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Released By

P O Box 642

Eurofins ELS Limited

Analytical Report

Report Number: 20/34382 Issue: 1 02 October 2020

LEVIN 5540 Attention: Bruce Marshall

Downer EDI Levin - Landfill

Sample 20/34382	Site 1-01 Levin HS1A 18558-0 Levin Landfill Sample		Map Ref.	Date Sampled 15/09/2020 00:00		Received 2020 09:27	Order No.
Notes. 10	Test	Result	Units		Test Date	Signatory	
0001	pH	7.8			16/09/2020	Gordon McA	rthur KTP
0002	Suspended Solids - Total	17	g/m³		16/09/2020	Gordon McA	rthur KTP
0040	Total (NP) Organic Carbon	7.2	g/m³		18/09/2020	Amit Kumar I	KTP
0052	Alkalinity - Total	43	g CaCO3/m³		16/09/2020	Gordon McA	rthur KTP
0055	Conductivity at 25°C	23.6	mS/m		16/09/2020	Gordon McA	rthur KTP
0081	Chemical Oxygen Demand	29	g/m³		16/09/2020	Gordon McA	thur KTP
0180	BOD5 - Soluble Carbonaceous	s < 1	g/m³		16/09/2020	Marylou Cab	ral KTP
0602	Chloride	25.5	g/m³		17/09/2020	Divina Lagaz	on KTP
0605	Nitrate - Nitrogen	1.05	g/m³		17/09/2020	Divina Lagaz	on KTP
0607	Sulphate	22.7	g/m³		17/09/2020	Divina Lagaz	on KTP
0760	Ammonia Nitrogen	0.04	g/m³		22/09/2020	Divina Lagaz	on KTP
1642	Total Hardness	65	g CaCO3/m³		16/09/2020	Amit Kumar I	KTP
1810	Calcium - Dissolved	14.0	g/m³		16/09/2020	Amit Kumar I	KTP
1819	Iron - Dissolved	0.089	g/m³		16/09/2020	Amit Kumar I	KTP
1822	Magnesium - Dissolved	7.20	g/m³		16/09/2020	Amit Kumar I	KTP
1834	Sodium - Dissolved	18.2	g/m³		16/09/2020	Amit Kumar I	KTP
2088	Dissolved Reactive Phosphorus	s< 0.005	g/m³		22/09/2020	Divina Lagaz	on KTP
6701	Aluminium - Dissolved	0.011	g/m³		16/09/2020	Shanel Kuma	ar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kuma	ar KTP
6707	Boron - Dissolved	0.05	g/m³		16/09/2020	Shanel Kuma	ar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		16/09/2020	Shanel Kuma	ar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kuma	ar KTP
6713	Copper - Dissolved	0.0012	g/m³		16/09/2020	Shanel Kuma	ar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kuma	ar KTP
6721	Manganese - Dissolved	0.0029	g/m³		16/09/2020	Shanel Kuma	ar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kuma	ar KTP
6724	Nickel - Dissolved	0.0006	g/m³		16/09/2020	Shanel Kuma	r KTP
6726	Potassium - Dissolved	2.87	g/m³		16/09/2020	Shanel Kuma	ar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		16/09/2020	Shanel Kuma	ar KTP
M0104	E. coli	100	cfu/100mL		16/09/2020	Maria Norris	KTP
MO-5001	Volatile Fatty Acids	< 5 *	g/m³			Prashilla Sin	gh Transcribed
						by	
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Prashilla Sing	gh Transcribed
						by	
P1859	Sample Filtration	Completed			16/09/2020	Robyn Madg	e .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

0,		
Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/34382-1 ELS 02 October 2020 20:00:55

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification inhibitor.	1 g/m³
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid equivalent.	5 g/m³
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Released By

Eurofins ELS Limited

Analytical Report

Report Number: 20/34381 Issue: 1

02 October 2020

P O Box 642 **LEVIN 5540** Attention: Bruce Marshall

Downer EDI Levin - Landfill

Sample 20/34381	Site -01 Levin HS1 :8557-0 Levin Landfill Sample		Map Ref.	Date Sampled 15/09/2020 00:00		Received Order No. 2020 09:27 0
140100. 10	Test	Result	Units		Test Date	Signatory
0001	рН	7.9	Office		16/09/2020	Gordon McArthur KTP
0002	Suspended Solids - Total	14	g/m³		16/09/2020	Gordon McArthur KTP
0040	Total (NP) Organic Carbon	7.3	g/m³		18/09/2020	Amit Kumar KTP
0052	Alkalinity - Total	44	g CaCO3/m³		16/09/2020	Gordon McArthur KTP
0055	Conductivity at 25°C	23.7	mS/m		16/09/2020	Gordon McArthur KTP
0081	Chemical Oxygen Demand	54	g/m³		16/09/2020	Gordon McArthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		16/09/2020	Marylou Cabral KTP
0602	Chloride	25.0	g/m³		17/09/2020	Divina Lagazon KTP
0605	Nitrate - Nitrogen	1.02	g/m³		17/09/2020	Divina Lagazon KTP
0607	Sulphate	22.0	g/m³		17/09/2020	Divina Lagazon KTP
0760	Ammonia Nitrogen	< 0.01	g/m³		22/09/2020	Divina Lagazon KTP
1642	Total Hardness	65	g CaCO3/m³		16/09/2020	Amit Kumar KTP
1810	Calcium - Dissolved	14.2	g/m³		16/09/2020	Amit Kumar KTP
1819	Iron - Dissolved	0.082	g/m³		16/09/2020	Amit Kumar KTP
1822	Magnesium - Dissolved	7.26	g/m³		16/09/2020	Amit Kumar KTP
1834	Sodium - Dissolved	18.6	g/m³		16/09/2020	Amit Kumar KTP
2088	Dissolved Reactive Phosphorus	s< 0.005	g/m³		22/09/2020	Divina Lagazon KTP
6701	Aluminium - Dissolved	0.013	g/m³		16/09/2020	Shanel Kumar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kumar KTP
6707	Boron - Dissolved	0.05	g/m³		16/09/2020	Shanel Kumar KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		16/09/2020	Shanel Kumar KTP
6711	Chromium - Dissolved	< 0.001	g/m³		16/09/2020	Shanel Kumar KTP
6713	Copper - Dissolved	0.0011	g/m³		16/09/2020	Shanel Kumar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kumar KTP
6721	Manganese - Dissolved	0.0029	g/m³		16/09/2020	Shanel Kumar KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kumar KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		16/09/2020	Shanel Kumar KTP
6726	Potassium - Dissolved	2.91	g/m³		16/09/2020	Shanel Kumar KTP
6738	Zinc - Dissolved	< 0.002	g/m³		16/09/2020	Shanel Kumar KTP
M0104	E. coli	150	cfu/100mL		16/09/2020	Maria Norris KTP
MO-5001	Volatile Fatty Acids	< 5	g/m³			Prashilla Singh Transcribed
						by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Prashilla Singh Transcribed
						by
P1859	Sample Filtration	Completed			16/09/2020	Robyn Madge .

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

0,		
Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 2 Report Number: 20/34381-1 ELS 02 October 2020 20:00:51

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification	1 g/m³
	inhibitor.	
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid	5 g/m³
	equivalent.	
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Report Released By

P O Box 642

LEVIN 5540

Eurofins ELS Limited

Analytical Report

Report Number: 20/40302 Issue: 1

10 November 2020

Attention: Bruce Marshall

Downer EDI Levin - Landfill

	Attention. Brace Marshall						
Sample	Site		Map Ref.	Date Sampled		eceived	Order No.
20/40302	2-01 Levin C2dd 91362-0 Levin Landfill			06/10/2020 00:00	07/10/2	2020 09:43	0
Notes: 18							
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.4			07/10/2020	Gordon McA	
0055	Conductivity at 25°C	53.3	mS/m		07/10/2020	Gordon McA	Arthur KTP
0081	Chemical Oxygen Demand	34	g/m³		08/10/2020	Gordon McA	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		07/10/2020	Gordon McA	orthur KTP
0602	Chloride	38.8	g/m³		05/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	< 0.01	g/m³		05/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.32	g/m³		09/10/2020	Divina Laga	zon KTP
6701	Aluminium - Dissolved	0.023	g/m³		13/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	0.06	g/m³		08/10/2020	Shuyu Zhao	
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	0.627	g/m³		08/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	· ·		08/10/2020	•	
	•		g/m³			Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu I	
P1859	Sample Filtration	Completed			08/10/2020	Ruth Ashton	١.
Sample	Site		Map Ref.	Date Sampled	Date R	eceived	Order No.
20/40302			map iton	06/10/2020 00:00		2020 09:43	0
Notes: 19	91363-0 Levin Landfill						
	Test	Result	Units		Test Date	Signatory	
0001	pH	7.5			07/10/2020	Gordon McA	orthur KTP
0055	Conductivity at 25°C	44.9	mS/m		07/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	18	g/m³		08/10/2020	Gordon McA	
	· -	-	· ·				
0180	BOD5 - Soluble Carbonaceous		g/m³		07/10/2020	Gordon McA	
0602	Chloride	39.2	g/m³		05/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	< 0.01	g/m³		05/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	0.22	g/m³		09/10/2020	Divina Laga	
6701	Aluminium - Dissolved	< 0.002	g/m³		08/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	0.05	g/m³		08/10/2020	Shuyu Zhao	KTP
6717	Iron - Dissolved	0.03	g/m³		08/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.240	g/m³		08/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6731	Sodium - Dissolved	36.0	g/m³		13/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu I	
P1859	Sample Filtration	Completed	014/1001112		08/10/2020	Ruth Ashton	
	Sample i ilitation	Oompicted			00/10/2020	Tutil Ashtor	•
Sample	Site		Map Ref.	Date Sampled		eceived	Order No.
20/40302				06/10/2020 00:00	07/10/2	2020 09:43	0
Notes: 19	91364-0 Levin Landfill						
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.3			07/10/2020	Gordon McA	orthur KTP
0055	Conductivity at 25°C	44.8	mS/m		07/10/2020	Gordon McA	rthur KTP
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	rthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		07/10/2020	Gordon McA	rthur KTP
0602	Chloride	40.6	g/m³		05/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	< 0.01	g/m³		05/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	0.26	g/m³		09/10/2020	Divina Laga	
	~		=			_	
6701	Aluminium - Dissolved	< 0.002	g/m³		08/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	0.06	g/m³		08/10/2020	Shuyu Zhao	
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	0.402	g/m³		08/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP
			-				
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 1 of 18 Report Number: 20/40302-1 ELS 10 November 2020 17:24:18

Sample	Site		Map Ref.	Date Sampled		Received	Order No.
20/40302 Notes: 10				06/10/2020 00:00	07/10/2	2020 09:43	0
Notes: 19	91364-0 Levin Landfill	Daniel C	11. 5		T . 45 *	01 1	
M0404	Test	Result	Units		Test Date	Signatory	KTD
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu	
P1859	Sample Filtration	Completed			08/10/2020	Ruth Ashtor	1.
Sample	Site		Map Ref.	Date Sampled		Received	Order No.
20/40302				01/10/2020 00:00	05/10/2	2020 14:19	0
Notes: 18	91365-0 Levin Landfill	5 "				0 : .	
0004	Test	Result	Units		Test Date	Signatory	
0001	pH	7.0	0/		06/10/2020	Marylou Cal	
0055	Conductivity at 25°C	28.1	mS/m		06/10/2020	Marylou Cal	
0081	Chemical Oxygen Demand	< 15	g/m³		06/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		05/10/2020	Marylou Cal	
0602	Chloride	31.7	g/m³		05/10/2020	Amit Kumar	
0605	Nitrate - Nitrogen	< 0.01	g/m³		05/10/2020	Amit Kumar	
0760	Ammonia Nitrogen	0.10	g/m³		06/10/2020	Athena Cao	
6701	Aluminium - Dissolved	< 0.002	g/m³		06/10/2020	Shuyu Zhac	
6707	Boron - Dissolved	0.04	g/m³		06/10/2020	Shuyu Zhao	
6718	Lead - Dissolved	< 0.0005	g/m³		06/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	0.0616	g/m³		06/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		06/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		06/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		05/10/2020	Maria Norris	
P1859	Sample Filtration	Completed			06/10/2020	Ruth Ashtor	1.
Sample	Site		Map Ref.	Date Sampled		Received	Order No.
20/40302	2-06 Levin C1 91367-0 Levin Landfill			07/10/2020 00:00	08/10/2	2020 09:47	0
NOIES. IS		5 "				0 : .	
0004	Test	Result	Units		Test Date	Signatory	
0001	pH	6.6	0/		08/10/2020	Gordon McA	
0055	Conductivity at 25°C	146	mS/m		08/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	81	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		08/10/2020	Marylou Cal	
0602	Chloride	283	g/m³		12/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	< 0.01	g/m³		09/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	5.64	g/m³		09/10/2020	Divina Laga	
6701	Aluminium - Dissolved	0.018	g/m³		09/10/2020	Shanel Kum	
6707	Boron - Dissolved	0.72	g/m³		09/10/2020	Shanel Kum	
6718	Lead - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6721	Manganese - Dissolved	0.471	g/m³		09/10/2020	Shanel Kum	
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6724 M0104	Nickel - Dissolved	0.0009	g/m³		09/10/2020	Shanel Kum	
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Juana Tama	•
P1859	Sample Filtration	Completed			09/10/2020	Robyn Mad	ye.
Sample	Site		Map Ref.	Date Sampled		Received	Order No.
20/40302				08/10/2020 00:00	08/10/2	2020 15:26	0
Notes. 18	91368-0 Levin Landfill	Decult	l lmit-		Took Date	Ciamatam	
0004	Test	Result	Units		Test Date	Signatory	nt KTD
0001	pH Conductivity at 35°C	6.9 239	rn C /m		08/10/2020	Jennifer Mo	
0055	Conductivity at 25°C		mS/m		08/10/2020	Jennifer Mo	
0081	Chemical Oxygen Demand	129	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		08/10/2020	Marylou Cal	
0602	Chloride Nitroto Nitrogon	161	g/m³		09/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	< 0.10	g/m³		12/10/2020	Shanel Kum	
0760 6701	Ammonia Nitrogen	145	g/m³		09/10/2020	Divina Laga Shanel Kum	
6701 6707	Aluminium - Dissolved	0.015	g/m³		09/10/2020	Shanel Kum Shanel Kum	
6707	Boron - Dissolved	1.43	g/m³		09/10/2020		
6718 6721	Lead - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6721	Manganese - Dissolved	0.0428	g/m³		09/10/2020	Shanel Kum	
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6724	Nickel - Dissolved	0.0039	g/m³		09/10/2020	Shanel Kum	
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Maria Norris	
P1859	Sample Filtration	Completed			09/10/2020	Robyn Mad	y e .

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 2 of 18 Report Number: 20/40302-1 ELS 10 November 2020 17:24:18

Sample 20/40302			Map Ref.	Date Sampled 08/10/2020 00:00		eceived 2020 15:26	Order No.
Notes: 19	91369-0 Levin Landfill						
	Test	Result	Units		Test Date	Signatory	
0001	рН	6.8			08/10/2020	Jennifer Mor	nt KTP
0055	Conductivity at 25°C	150	mS/m		08/10/2020	Jennifer Mor	nt KTP
0081	Chemical Oxygen Demand	106	g/m³		08/10/2020	Gordon McA	rthur KTP
0180	BOD5 - Soluble Carbonaceous	1	g/m³		08/10/2020	Marylou Cab	ral KTP
0602	Chloride	122	g/m³		09/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	< 0.10	g/m³		12/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	1.30	g/m³		09/10/2020	Divina Lagaz	zon KTP
6701	Aluminium - Dissolved	0.002	g/m³		09/10/2020	Shanel Kum	
6707	Boron - Dissolved	0.94	g/m³		09/10/2020	Shanel Kum	
6718	Lead - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6721	Manganese - Dissolved	2.38	g/m³		13/10/2020	Shuyu Zhao	
	•		· ·			•	
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6724	Nickel - Dissolved	0.0023	g/m³		09/10/2020	Shanel Kum	
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Maria Norris	
P1859	Sample Filtration	Completed			09/10/2020	Robyn Mado	je.
Sample 20/40302 Notes: 19	Site 2-09 Levin D4 21370-0 Levin Landfill		Map Ref.	Date Sampled 07/10/2020 00:00		eceived 2020 09:47	Order No.
140100. 10	Test	Result	Units		Test Date	Signatory	
0001	pH	6.8	Units		08/10/2020	Signatory Gordon McA	rthur KTD
	•		0/				
0055	Conductivity at 25°C	31.1	mS/m		08/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		08/10/2020	Marylou Cab	oral KTP
0602	Chloride	44.3	g/m³		09/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	< 0.01	g/m³		09/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.25	g/m³		09/10/2020	Divina Lagaz	zon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		09/10/2020	Shanel Kum	ar KTP
6707	Boron - Dissolved	0.04	g/m³		09/10/2020	Shanel Kum	ar KTP
6717	Iron - Dissolved	0.43	g/m³		09/10/2020	Shanel Kum	
6718	Lead - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6721	Manganese - Dissolved	0.201	g/m³		09/10/2020	Shanel Kum	
			· ·				
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6724	Nickel - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6731	Sodium - Dissolved	32.0	g/m³		13/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Juana Tama	
P1859	Sample Filtration	Completed			09/10/2020	Robyn Madg	je.
Sample 20/40302 Notes: 19	Site 2-10 Levin B1 21371-0 Levin Landfill		Map Ref.	Date Sampled 08/10/2020 00:00		eceived 2020 15:26	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pH	6.7	- ·-		08/10/2020	Jennifer Mor	nt KTP
0055	Conductivity at 25°C	168	mS/m		08/10/2020	Jennifer Mor	
0081	Chemical Oxygen Demand	90	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		08/10/2020	Marylou Cab	
			-			•	
0602	Chloride	264	g/m³		09/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	11.2	g/m³		09/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	7.60	g/m³		09/10/2020	Divina Lagaz	
6701	Aluminium - Dissolved	0.005	g/m³		09/10/2020	Shanel Kum	
6707	Boron - Dissolved	0.69	g/m³		09/10/2020	Shanel Kum	ar KTP
6718	Lead - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	ar KTP
6721	Manganese - Dissolved	9.84	g/m³		13/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	ar KTP
6724	Nickel - Dissolved	0.0019	g/m³		09/10/2020	Shanel Kum	ar KTP
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Maria Norris	KTP
P1859	Sample Filtration	Completed			09/10/2020	Robyn Madg	
Sample 20/40302 Notes: 19	Site 2-11 Levin B2 21372-0 Levin Landfill		Map Ref.	Date Sampled 08/10/2020 00:00		eceived 2020 15:26	Order No.
		Pocule	Unite		Test Date	Signatory	
0001	Test pH	Result 6.6	Units		08/10/2020	Signatory Jennifer Mor	nt KTP

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 3 of 18 Report Number: 20/40302-1 ELS 10 November 2020 17:24:18

Sample 20/40302 Notes: 19	Site 2-11 Levin B2 91372-0 Levin Landfill		Map Ref.	Date Sampled 08/10/2020 00:00	Date Rec 08/10/202		Order No.
	Test	Result	Units		Test Date	Signatory	
0055	Conductivity at 25°C	223	mS/m			Jennifer Mont	KTP
0081	Chemical Oxygen Demand	115	g/m³			Gordon McAr	
0180	BOD5 - Soluble Carbonaceous	_	g/m³			Marylou Cabr	
0602	Chloride	126	g/m³			Shanel Kuma	
0605	Nitrate - Nitrogen	94.4	g/m³			Shanel Kuma	
0760	Ammonia Nitrogen	42.7	g/m³			Divina Lagazo	
6701	Aluminium - Dissolved	0.014	g/m³			Shanel Kuma	
6707	Boron - Dissolved	1.69	g/m³			Shanel Kuma	
6718	Lead - Dissolved	< 0.0005	· ·			Shanel Kuma	
			g/m³				
6721	Manganese - Dissolved	5.02	g/m³			Shuyu Zhao k	
6722	Mercury - Dissolved	< 0.0005	g/m³			Shanel Kuma	
6724	Nickel - Dissolved	0.0026	g/m³			Shanel Kuma	
M0104	E. coli	8	cfu/100mL			Yuemei Yu K	
P1859	Sample Filtration	Completed			09/10/2020	Robyn Madge	9.
Sample 20/40302 Notes: 19	Site 2-12 Levin B3s 91373-0 Levin Landfill		Map Ref.	Date Sampled 08/10/2020 00:00	Date Rec 08/10/202		Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pH	7.0	<u>-</u> 			Jennifer Mont	KTP
0055	Conductivity at 25°C	261	mS/m			Jennifer Mont	
0081	Chemical Oxygen Demand	211	g/m³			Gordon McAr	
0180	BOD5 - Soluble Carbonaceous		g/m³			Marylou Cabr	
0602	Chloride	159	g/m³			Shanel Kuma	
0605	Nitrate - Nitrogen	< 0.10	g/m³			Shanel Kuma	
0760	Ammonia Nitrogen	169	g/m³			Divina Lagazo	
6701	Aluminium - Dissolved	0.006	g/m³			Shanel Kuma	
6707	Boron - Dissolved	1.18	=			Shanel Kuma	
			g/m³				
6718	Lead - Dissolved	< 0.0005 3.05	g/m³			Shanel Kuma	
6721	Manganese - Dissolved		g/m³			Shuyu Zhao k	
6722	Mercury - Dissolved	< 0.0005	g/m³			Shanel Kuma	
6724	Nickel - Dissolved	0.0090	g/m³			Shanel Kuma	
M0104	E. coli	< 4	cfu/100mL			Maria Norris I	
P1859	Sample Filtration	Completed			09/10/2020	Robyn Madge	9.
Sample 20/40302 Notes: 19	Site 2-13 Levin E1s 91374-0 Levin Landfill		Map Ref.	Date Sampled 07/10/2020 00:00	Date Rec 08/10/202		Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pH	6.8			08/10/2020	Gordon McAr	thur KTP
0055	Conductivity at 25°C	27.4	mS/m		08/10/2020	Gordon McAr	thur KTP
0081	Chemical Oxygen Demand	19	g/m³		08/10/2020	Gordon McAr	thur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		08/10/2020 I	Marylou Cabr	al KTP
0602	Chloride	27.8	g/m³			Shanel Kuma	
0605	Nitrate - Nitrogen	< 0.01	g/m³		09/10/2020	Shanel Kuma	r KTP
0760	Ammonia Nitrogen	0.23	g/m³			Divina Lagazo	on KTP
6701	Aluminium - Dissolved	0.007	g/m³			Shanel Kuma	
6707	Boron - Dissolved	< 0.03	g/m³			Shanel Kuma	
6717	Iron - Dissolved	4.83	g/m³			Shanel Kuma	
6718	Lead - Dissolved	0.0018	g/m³			Shanel Kuma	
6721	Manganese - Dissolved	0.241	g/m³			Shanel Kuma	
6722	Mercury - Dissolved	< 0.0005	g/m³			Shanel Kuma	
6724	Nickel - Dissolved	< 0.0005	g/m³			Shanel Kuma	
6731	Sodium - Dissolved	26.8	g/m³			Shuyu Zhao k	
M0104	E. coli	< 4	cfu/100mL			Juana Tamay	
P1859	Sample Filtration	Completed	OIG/ TOOTTL			Robyn Madge	
Sample	Site	Jonipieteu	Map Ref.	Date Sampled	Date Red	, ,	Order No.
20/40302			παρ ποι.	07/10/2020 00:00	08/10/20		0
	Test	Result	Units		Test Date	Signatory	
0001	pH	7.5	Jinto			Gordon McAr	thur KTP
0001	Conductivity at 25°C	7.5 36.5	mS/m			Gordon McAr Gordon McAr	
0000	Conductivity at 20 C	50.5	1110/111		00/10/2020	COIGOII MICAI	andi IXII

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 4 of 18 Report Number: 20/40302-1 ELS

Sample 20/40302			Map Ref.	Date Sampled 07/10/2020 00:00		eceived 2020 09:47	Order No.
Notes: 19	91375-0 Levin Landfill						
	Test	Result	Units		Test Date	Signatory	
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	rthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		08/10/2020	Marylou Cal	oral KTP
0602	Chloride	45.7	g/m³		09/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	< 0.01	g/m³		12/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	0.33	g/m³		09/10/2020	Divina Laga	
6701	Aluminium - Dissolved	< 0.002	g/m³		09/10/2020	Shanel Kum	
6707	Boron - Dissolved	< 0.03	g/m³		09/10/2020	Shanel Kum	
6717	Iron - Dissolved	0.03	g/m³		09/10/2020	Shanel Kum	
			ŭ		09/10/2020		
6718	Lead - Dissolved	< 0.0005	g/m³			Shanel Kum	
6721	Manganese - Dissolved	0.246	g/m³		09/10/2020	Shanel Kum	
6722	Mercury - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6724	Nickel - Dissolved	< 0.0005	g/m³		09/10/2020	Shanel Kum	
6731	Sodium - Dissolved	31.4	g/m³		13/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		08/10/2020	Juana Tama	yo KTP
P1859	Sample Filtration	Completed			09/10/2020	Robyn Made	je .
		-					
Sample 20/40302 Notes: 19	Site 2-15 Levin D1 21376-0 Levin Landfill		Map Ref.	Date Sampled 06/10/2020 00:00		eceived 2020 09:43	Order No. 0
	Test	Result	Units		Test Date	Signatory	
0004		6.6	Jillis		07/10/2020	Gordon McA	rthur I/TD
0001	pH Conductivity at 35°C		w= C/==				
0055	Conductivity at 25°C	49.6	mS/m		07/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		07/10/2020	Gordon McA	rthur KTP
0602	Chloride	28.2	g/m³		05/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	10.9	g/m³		05/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	< 0.01	g/m³		09/10/2020	Divina Laga	zon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		08/10/2020	Shuyu Zhao	KTP
6707	Boron - Dissolved	0.05	g/m³		08/10/2020	Shuyu Zhao	
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
	•		ŭ			-	
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu I	
P1859	Sample Filtration	Completed			08/10/2020	Ruth Ashton	
Sample 20/40302			Map Ref.	Date Sampled 06/10/2020 00:00		eceived 2020 09:43	Order No.
Notes: 18	91377-0 Levin Landfill						
	Test	Result	Units		Test Date	Signatory	
0001	рН	6.4			07/10/2020	Gordon McA	rthur KTP
0055	Conductivity at 25°C	34.4	mS/m		07/10/2020	Gordon McA	rthur KTP
0081	Chemical Oxygen Demand	40	g/m³		08/10/2020	Gordon McA	rthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		07/10/2020	Gordon McA	rthur KTP
0602	Chloride	31.5	g/m³		05/10/2020	Shanel Kum	ar KTP
0605	Nitrate - Nitrogen	0.02	g/m³		05/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	0.49	g/m³		09/10/2020	Divina Laga	
6701	Aluminium - Dissolved	0.015	g/m³		13/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	0.06	g/m³		08/10/2020	Shuyu Zhao	
			-			•	
6717	Iron - Dissolved	9.28	g/m³		08/10/2020	Shuyu Zhao	
6718	Lead - Dissolved	0.0028	g/m³		08/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	0.317	g/m³		08/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP
6731	Sodium - Dissolved	30.6	g/m³		13/10/2020	Shuyu Zhao	KTP
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu I	
P1859	Sample Filtration	Completed			08/10/2020	Ruth Ashton	
Sample 20/40302 Notes: 19	Site 2-17 Levin D3r 21378-0 Levin Landfill		Map Ref.	Date Sampled 06/10/2020 00:00		eceived 2020 09:43	Order No.
0001	Test pH	Result 6.7	Units		Test Date 07/10/2020	Signatory Gordon McA	arthur KTP
	1						

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 5 of 18 Report Number: 20/40302-1 ELS 10 November 2020 17:24:18

Sample 20/40302	Site 1-17 Levin D3r 1378-0 Levin Landfill		Map Ref.	Date Sampled 06/10/2020 00:00		eceived 2020 09:43	Order No
NOIES. 19		Decult	l Inita		Toot Date	Cianatani	
0055	Test	Result	Units		Test Date	Signatory	
0055	Conductivity at 25°C	22.1	mS/m		07/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		07/10/2020	Gordon McA	
0602	Chloride	22.1	g/m³		05/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	0.19	g/m³		05/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	0.16	g/m³		09/10/2020	Divina Lagaz	zon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		08/10/2020	Shuyu Zhao	KTP
6707	Boron - Dissolved	0.04	g/m³		08/10/2020	Shuyu Zhao	KTP
6717	Iron - Dissolved	1.05	g/m³		08/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.184	g/m³		08/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6731	Sodium - Dissolved	25.3	g/m³		13/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu k	
P1859	Sample Filtration	Completed	GIU/ TOUTIL		08/10/2020	Ruth Ashton	
1008	oampie i ilitation	Completed					
ample 0/40302 otes: 19	Site 1-18 Levin D6 1379-0 Levin Landfill		Map Ref.	Date Sampled 06/10/2020 00:00		eceived 2020 09:43	Order No
	Test	Result	Units		Test Date	Signatory	
0001	pH	6.7	00		07/10/2020	Gordon McA	rthur KTP
	•		m C /m				
0055	Conductivity at 25°C	44.7	mS/m		07/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	< 15	g/m³		08/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		07/10/2020	Gordon McA	
0602	Chloride	20.9	g/m³		05/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	21.2	g/m³		05/10/2020	Shanel Kum	ar KTP
0760	Ammonia Nitrogen	< 0.01	g/m³		09/10/2020	Divina Lagaz	zon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		08/10/2020	Shuyu Zhao	KTP
6707	Boron - Dissolved	0.06	g/m³		08/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		08/10/2020	Shuyu Zhao	
M0104	E. coli	< 4	cfu/100mL		07/10/2020	Yuemei Yu k	
	Sample Filtration	Completed	CIU/ TOOTTL		08/10/2020	Ruth Ashton	
1000	Campie i ilitation	Completed			00/10/2020	Trutti Ashton	•
ample 0/40302 otes: 19	Site 1-19 Levin G1S 1380-0 Levin Landfill		Map Ref.	Date Sampled 01/10/2020 00:00		eceived 2020 14:19	Order No
	Test	Result	Units		Test Date	Signatory	
0001	pH	6.6			06/10/2020	Marylou Cab	ral KTP
0055	Conductivity at 25°C	43.5	mS/m		06/10/2020	Marylou Cab	
0033	•	105	g/m³		06/10/2020	Gordon McA	
	Chemical Oxygen Demand		· ·				
0180	BOD5 - Soluble Carbonaceous		g/m³		05/10/2020	Marylou Cab	
0602	Chloride	59.1	g/m³		05/10/2020	Amit Kumar	
0605	Nitrate - Nitrogen	< 0.10	g/m³		05/10/2020	Amit Kumar	
0760	Ammonia Nitrogen	0.04	g/m³		06/10/2020	Athena Cao	
	Aluminium - Dissolved	0.157	g/m³		06/10/2020	Shuyu Zhao	KTP
6701	Aldininani - Dissolved		a/m3		06/10/2020	Shuyu Zhao	KTP
	Boron - Dissolved	< 0.03	g/m³				
6707		< 0.03 3.34	g/m³		06/10/2020	Shuyu Zhao	KTP
6707 6717	Boron - Dissolved		•		06/10/2020 06/10/2020	-	
6707 6717 6718	Boron - Dissolved Iron - Dissolved Lead - Dissolved	3.34 < 0.0005	g/m³ g/m³		06/10/2020	Shuyu Zhao	KTP
6707 6717 6718 6721	Boron - Dissolved Iron - Dissolved Lead - Dissolved Manganese - Dissolved	3.34 < 0.0005 0.176	g/m³ g/m³ g/m³		06/10/2020 06/10/2020	Shuyu Zhao Shuyu Zhao	KTP KTP
6707 6717 6718 6721 6722	Boron - Dissolved Iron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved	3.34 < 0.0005 0.176 < 0.0005	g/m³ g/m³ g/m³ g/m³		06/10/2020 06/10/2020 06/10/2020	Shuyu Zhao Shuyu Zhao Shuyu Zhao	KTP KTP KTP
6717 6718 6721 6722 6724	Boron - Dissolved Iron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved	3.34 < 0.0005 0.176 < 0.0005 0.0016	g/m³ g/m³ g/m³ g/m³ g/m³		06/10/2020 06/10/2020 06/10/2020 06/10/2020	Shuyu Zhao Shuyu Zhao Shuyu Zhao Shuyu Zhao	KTP KTP KTP KTP
6707 6717 6718 6721 6722	Boron - Dissolved Iron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved	3.34 < 0.0005 0.176 < 0.0005	g/m³ g/m³ g/m³ g/m³		06/10/2020 06/10/2020 06/10/2020	Shuyu Zhao Shuyu Zhao Shuyu Zhao	KTP KTP KTP KTP KTP

Sample 20/40302			Map Ref.	Date Sampled 01/10/2020 00:00	Date Received 05/10/2020 14:19	Order No.
Notes: 19	91381-0 Levin Landfill					
	Test	Result	Units		Test Date Signator	•
0001	pH	7.2				Cabral KTP
0055	Conductivity at 25°C	235	mS/m		•	Cabral KTP
0081	Chemical Oxygen Demand	66	g/m³			AcArthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		•	Cabral KTP
0602	Chloride	584	g/m³			umar KTP
0605	Nitrate - Nitrogen	< 0.10	g/m³		05/10/2020 Amit Kun	nar KTP
0760	Ammonia Nitrogen	< 0.01	g/m³		06/10/2020 Athena C	ao KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		06/10/2020 Shuyu Zh	nao KTP
6707	Boron - Dissolved	0.95	g/m³		06/10/2020 Shuyu Zh	nao KTP
6718	Lead - Dissolved	< 0.0005	g/m³		06/10/2020 Shuyu Zh	nao KTP
6721	Manganese - Dissolved	0.201	g/m³		06/10/2020 Shuyu Zh	nao KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		06/10/2020 Shuyu Zh	nao KTP
6724	Nickel - Dissolved	0.0026	g/m³		06/10/2020 Shuyu Zł	nao KTP
M0104	E. coli	< 4	cfu/100mL		05/10/2020 Maria No	rris KTP
P1859	Sample Filtration	Completed			06/10/2020 Ruth Ash	ton .
Sample 20/40302	Site	· ·	Map Ref.	Date Sampled 05/10/2020 00:00	Date Received	Order No.
	91382-0 Levin Landfill			03/10/2020 00.00	06/10/2020 11:01	U
	Test	Result	Units		Test Date Signator	v
0001	pH	7.0	Jillis		•	y //cArthur KTP
0001	•	29.4	mS/m			AcArthur KTP
0055 0081	Conductivity at 25°C Chemical Oxygen Demand	29.4 50	mS/m g/m³			//cAπnur ΚΤΡ //cArthur KTP
			ŭ			
0180	BOD5 - Soluble Carbonaceous		g/m³			AcArthur KTP
0602	Chloride	54.8	g/m³		05/10/2020 Amit Kun	
0605	Nitrate - Nitrogen	1.64	g/m³		05/10/2020 Amit Kun	
0760	Ammonia Nitrogen	< 0.01	g/m³			gazon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³			umar KTP
6707	Boron - Dissolved	0.03	g/m³		07/10/2020 Shuyu Zh	
6718	Lead - Dissolved	< 0.0005	g/m³		07/10/2020 Shuyu Zh	
6721	Manganese - Dissolved	0.0149	g/m³		07/10/2020 Shuyu Zh	
6722	Mercury - Dissolved	< 0.0005	g/m³		07/10/2020 Shuyu Zh	nao KTP
6704		0.0007	g/m³		07/10/2020 Shuyu Zh	nao KTP
6724	Nickel - Dissolved	0.0007	g,		- · · ·	
6724 M0104	Nickel - Dissolved E. coli	< 4	cfu/100mL		-	mayo KTP
			•		-	mayo KTP
M0104 P1859	E. coli Sample Filtration	< 4	cfu/100mL	Data Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M	mayo KTP adge .
M0104 P1859 Sample 20/40302	E. coli Sample Filtration	< 4	•	Date Sampled 05/10/2020 00:00	06/10/2020 Juana Ta	mayo KTP
M0104 P1859 Sample 20/40302	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill	< 4 Completed	cfu/100mL Map Ref.		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01	omayo KTP adge . Order No. 0
M0104 P1859 Sample 20/40302 Notes: 19	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test	< 4 Completed	cfu/100mL		06/10/2020 Juana Ta 07/10/2020 Robyn M	Order No.
M0104 P1859 Sample 20/40302 Notes: 19	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH	< 4 Completed Result 6.9	Map Ref. Units		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M	Order No. 0 Working the state of the state
M0104 P1859 Sample 20/40302 Notes: 19	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C	< 4 Completed Result 6.9 47.5	Map Ref. Units mS/m		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M	Order No. 0 W McArthur KTP McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand	< 4 Completed Result 6.9 47.5 < 15	Map Ref. Units mS/m g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M	Order No. 0 y McArthur KTP McArthur KTP McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous	< 4 Completed Result 6.9 47.5 < 15 < 1	Map Ref. Units mS/m g/m³ g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M	Order No. 0 y McArthur KTP McArthur KTP McArthur KTP McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride	Result 6.9 47.5 < 15 < 1 28.5	Map Ref. Units mS/m g/m³ g/m³ g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen	Result 6.9 47.5 < 15 < 1 28.5 1.64	Map Ref. Units mS/m g/m³ g/m³ g/m³ g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun	Order No. 0 Y McArthur KTP McArthur KTP McArthur KTP McArthur KTP McArthur KTP McArthur KTP Mar KTP Mar KTP
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605 0760	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01	Map Ref. Units mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Divina La	Order No. 0 Y McArthur KTP McArthur KTP McArthur KTP McArthur KTP McArthur KTP mar KTP mar KTP gazon KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Divina La 07/10/2020 Shanel K	Order No. Order No. O McArthur KTP McArthur KTP McArthur KTP McArthur KTP mar KTP mar KTP mar KTP mar KTP mar KTP mar KTP umar KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Divina La 07/10/2020 Shanel K 07/10/2020 Shuyu Zh	Order No. Order No. O McArthur KTP McArthur KTP McArthur KTP McArthur KTP Mar KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718	E. coli Sample Filtration Site Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.001 < 0.002 0.03 < 0.0005	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Divina La 07/10/2020 Shanel K 07/10/2020 Shuyu Zh 07/10/2020 Shuyu Zh	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Shanel K 07/10/2020 Shuyu Zh 07/10/2020 Shuyu Zh 07/10/2020 Shuyu Zh	Order No. 0 Y McArthur KTP Mc
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Shanel K 07/10/2020 Shuyu Zi 07/10/2020 Shuyu Zi	Order No. 0 Y McArthur KTP Mc
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 < 0.0053 < 0.0005 < 0.0005 < 0.0005	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Shanel K 07/10/2020 Shayu Zi 07/10/2020 Shuyu Zi	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Shanel K 07/10/2020 Shayu Zi 07/10/2020 Shuyu Zi	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved	Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 < 0.0053 < 0.0005 < 0.0005 < 0.0005	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Shanel K 07/10/2020 Shayu Zi 07/10/2020 Shuyu Zi	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved E. coli Sample Filtration Site 2-23 Levin F2	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005 < 0.0005 < 4	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/		06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Shanel K 07/10/2020 Shanel K 07/10/2020 Shuyu Zi 07/10/2020 Shuyu Zi 06/10/2020 Juana Ta	Order No. 0 Y McArthur KTP
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved E. coli Sample Filtration	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005 < 0.0005 < 4	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/	05/10/2020 00:00 Date Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kum 05/10/2020 Amit Kum 05/10/2020 Shanel K 07/10/2020 Shuyu Zh 07/10/2020 Robyn M	Order No. Order No. Order No. O McArthur KTP McArthur
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved E. coli Sample Filtration Site 2-23 Levin F2	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005 < 0.0005 < 4	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/	05/10/2020 00:00 Date Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 07/10/2020 Gordon M 05/10/2020 Amit Kum 05/10/2020 Amit Kum 05/10/2020 Shanel K 07/10/2020 Shuyu Zh 07/10/2020 Robyn M	Order No. Order No. Order No. O McArthur KTP McArthur
M0104 P1859 Sample 20/40302 Notes: 18 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302	E. coli Sample Filtration Site 2-22 Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved E. coli Sample Filtration Site 2-23 Levin F2 91384-0 Levin Landfill	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.01 < 0.002 0.03 < 0.0005 0.0053 < 0.0005 < 0.0005 < Completed	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/	05/10/2020 00:00 Date Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Shuyu Zh 07/10/2020 Shuyu Zh	Order No. Order No. O McArthur KTP McArth
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302 Notes: 19	E. coli Sample Filtration Site Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mickel - Dissolved Nickel - Dissolved E. coli Sample Filtration Site 2-23 Levin F2 91384-0 Levin Landfill Test	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.001 < 0.002 0.003 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < Completed Result	mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/	05/10/2020 00:00 Date Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Shanel K 07/10/2020 Shuyu Zh 06/10/2020 Juana Ta 07/10/2020 Shuyu Zh 06/10/2020 Gordon M	Order No. Order No. Order No. O McArthur KTP McArthur
M0104 P1859 Sample 20/40302 Notes: 19 0001 0055 0081 0180 0602 0605 0760 6701 6707 6718 6721 6722 6724 M0104 P1859 Sample 20/40302 Notes: 19	E. coli Sample Filtration Site Levin F1 91383-0 Levin Landfill Test pH Conductivity at 25°C Chemical Oxygen Demand BOD5 - Soluble Carbonaceous Chloride Nitrate - Nitrogen Ammonia Nitrogen Aluminium - Dissolved Boron - Dissolved Lead - Dissolved Manganese - Dissolved Mercury - Dissolved Nickel - Dissolved E. coli Sample Filtration Site 2-23 Levin F2 91384-0 Levin Landfill Test pH	< 4 Completed Result 6.9 47.5 < 15 < 1 28.5 1.64 < 0.001 < 0.002 0.003 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 7.0005 < 8 Completed Result 7.1	Map Ref. Units mS/m g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/m³ g/	05/10/2020 00:00 Date Sampled	06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M 06/10/2020 Gordon M 06/10/2020 Gordon M 05/10/2020 Amit Kun 05/10/2020 Amit Kun 05/10/2020 Amit Kun 09/10/2020 Shanel K 07/10/2020 Shuyu Zl 06/10/2020 Juana Ta 07/10/2020 Robyn M Date Received 06/10/2020 11:01 Test Date Signator 06/10/2020 Gordon M	Order No. Order No. Order No. O McArthur KTP

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 7 of 18 Report Number: 20/40302-1 ELS

Sample 20/40302	Site 2-23 Levin F2		Map Ref.	Date Sampled 05/10/2020 00:00		eceived 2020 11:01	Order No.
	91384-0 Levin Landfill			03/10/2020 00:00	00/10/2	2020 11.01	U
	Test	Result	Units		Test Date	Signatory	
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		07/10/2020	Gordon McA	Arthur KTP
0602	Chloride	21.8	g/m³		05/10/2020	Amit Kumar	KTP
0605	Nitrate - Nitrogen	0.47	g/m³		05/10/2020	Amit Kumar	KTP
0760	Ammonia Nitrogen	< 0.01	g/m³		09/10/2020	Divina Laga	zon KTP
6701	Aluminium - Dissolved	< 0.002	g/m³		07/10/2020	Shanel Kum	ar KTP
6707	Boron - Dissolved	0.04	g/m³		07/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.0017	g/m³		07/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	KTP
M0104	E. coli	< 4	cfu/100mL		06/10/2020	Juana Tama	ayo KTP
P1859	Sample Filtration	Completed			07/10/2020	Robyn Mad	ge .
Sample	Site		Map Ref.	Date Sampled	Date R	eceived	Order No.
20/40302				05/10/2020 00:00	06/10/2	2020 11:01	0
Notes: 19	91385-0 Levin Landfill						
000:	Test	Result	Units		Test Date	Signatory	Andrew IZE
0001	pH	7.0	 0/		06/10/2020	Gordon McA	
0055	Conductivity at 25°C	23.5	mS/m		06/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	< 15	g/m³		06/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous Chloride		g/m³		07/10/2020	Gordon McA Amit Kumar	
0602		21.6 2.05	g/m³		05/10/2020		
0605	Nitrate - Nitrogen		g/m³		05/10/2020	Amit Kumar	
0760 6701	Ammonia Nitrogen	< 0.01 0.030	g/m³		09/10/2020	Divina Laga Shanel Kum	
6701 6707	Aluminium - Dissolved Boron - Dissolved	< 0.030	g/m³		07/10/2020 07/10/2020	Shanei Kuii Shuyu Zhao	
6717	Iron - Dissolved	0.01	g/m³ g/m³		14/10/2020	Shanel Kum	
6718	Lead - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		07/10/2020	Shuyu Zhao	
6731	Sodium - Dissolved	26.8	g/m³		14/10/2020	Shanel Kum	
M0104	E. coli	< 4	cfu/100mL		06/10/2020	Juana Tama	
P1859	Sample Filtration	Completed	GIA/ TOOTILE		07/10/2020	Robyn Made	•
Sample	Site	<u> </u>	Man Dof	Data Sampled		eceived	Order No.
Sample 20/40302			Map Ref.	Date Sampled 01/10/2020 00:00		2020 14:30	0
Notes: 19	91388-0 Levin Landfill Sample						
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.4			16/10/2020	Gordon McA	Arthur KTP
0002	Suspended Solids - Total	66	g/m³		16/10/2020	Gordon McA	Arthur KTP
0040	Total (NP) Organic Carbon	44.5	g/m³		16/10/2020	Sharon van	
0052	Alkalinity - Total	684	g CaCO3/m³		16/10/2020	Gordon McA	
0055	Conductivity at 25°C	192	mS/m		16/10/2020	Gordon McA	
0081	Chemical Oxygen Demand	354	g/m³		20/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		16/10/2020	Gordon McA	
0602	Chloride	177	g/m³		16/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	0.24	g/m³		20/10/2020	Shanel Kum	
0607	Sulphate	0.62	g/m³		16/10/2020	Shanel Kum	
0760	Ammonia Nitrogen	57.8	g/m³		21/10/2020	Athena Cao	
1642	Total Hardness	405	g CaCO3/m³		16/10/2020	Amit Kumar	
1810	Calcium - Dissolved	81.6	g/m³		16/10/2020	Amit Kumar	
1819	Iron - Dissolved	0.312	g/m³		16/10/2020	Amit Kumar	
1822	Magnesium - Dissolved	48.7	g/m³		16/10/2020	Amit Kumar	
1834	Sodium - Dissolved	134	g/m³		16/10/2020	Amit Kumar	
2088	Dissolved Reactive Phosphorus		g/m³		21/10/2020	Athena Cao	
6701	Aluminium - Dissolved	0.009	g/m³		17/10/2020	Shanel Kum	
6703	Arsenic - Dissolved	0.001	g/m³		17/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	1.35	g/m³		17/10/2020	Shuyu Zhao	
6708 6711	Cadmium - Dissolved	< 0.0002	g/m³		17/10/2020	Shuyu Zhao	
h/11	Chromium - Dissolved	0.001	g/m³		17/10/2020	Shuyu Zhao	KIP
6712	Copper Dissolved	0.0000	g/m3		17/10/2020	Shuvu Zhao	KTD

6713

Copper - Dissolved

Wellington 85 Port Road, Seaview Lower Hutt 5045 Phone: (04) 576-5016

0.0009

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

g/m³

Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

17/10/2020

Page 8 of 18 Report Number: 20/40302-1 ELS

Shuyu Zhao KTP

Sample 20/40302			Map Ref.	Date Sampled 01/10/2020 00:00		Received 2020 14:30	Order No.
Notes: 19	1388-0 Levin Landfill Sample	.				0 : .	
6718	Test Lead - Dissolved	Result < 0.0005	Units g/m³		Test Date 17/10/2020	Signatory Shuyu Zhao	VTD
6721	Manganese - Dissolved	0.936	g/m³		17/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	0.0039	g/m³		17/10/2020	Shuyu Zhao	
6726	Potassium - Dissolved	49.2	g/m³		17/10/2020	Shuyu Zhao	
6738	Zinc - Dissolved	0.003	g/m³		17/10/2020	Shuyu Zhao	
M0104	E. coli	40	cfu/100mL		15/10/2020	Maria Norris	
	Volatile Fatty Acids	6 *	g/m ³		. 0, . 0, 2020		anscribed by
	Total Halogenated Phenolics	< 0.05	g/m³				anscribed by
P1859	Sample Filtration	Completed	9		16/10/2020	Robyn Mad	,
Sample 20/40302 Notes: 19	Site -28 Levin Leachate P 11389-0 Levin Landfill Sample	ond	Map Ref.	Date Sampled 15/10/2020 00:00		Received 2020 14:30	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	рН	7.9			16/10/2020	Jennifer Mo	nt KTP
0002	Suspended Solids - Total	92	g/m³		16/10/2020	Marylou Ca	bral KTP
0040	Total (NP) Organic Carbon	596	g/m³		16/10/2020	Sharon van	Soest KTP
0052	Alkalinity - Total	5,870	g CaCO3/m³		20/10/2020	Marylou Ca	bral KTP
0055	Conductivity at 25°C	1,360	mS/m		16/10/2020	Jennifer Mo	nt KTP
0081	Chemical Oxygen Demand	2,650	g/m³		20/10/2020	Gordon Mc	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	67	g/m³		16/10/2020	Marylou Ca	bral KTP
0602	Chloride	973	g/m³		20/10/2020	Shanel Kum	nar KTP
0605	Nitrate - Nitrogen	0.66	g/m³		20/10/2020	Shanel Kum	nar KTP
0607	Sulphate	76.1	g/m³		20/10/2020	Shanel Kum	nar KTP
0760	Ammonia Nitrogen	1,130	g/m³		22/10/2020	Athena Cao	KTP
1642	Total Hardness	497	g CaCO3/m³		16/10/2020	Amit Kumar	KTP
1810	Calcium - Dissolved	108	g/m³		16/10/2020	Amit Kumar	KTP
1819	Iron - Dissolved	4.73	g/m³		16/10/2020	Amit Kumar	KTP
1822	Magnesium - Dissolved	54.9	g/m³		16/10/2020	Amit Kumar	
1834	Sodium - Dissolved	847	g/m³		16/10/2020	Amit Kumar	
2088	Dissolved Reactive Phosphoru		g/m³		22/10/2020	Athena Cao	
6701	Aluminium - Dissolved	0.541	g/m³		17/10/2020	Shanel Kum	
6703	Arsenic - Dissolved	0.254	g/m³		17/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	6.64	g/m³		17/10/2020	Shuyu Zhao	
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/10/2020	Shuyu Zhao	
6711	Chromium - Dissolved	0.576	g/m³		17/10/2020	Shuyu Zhao	
6713	Copper - Dissolved	0.0142	g/m³		17/10/2020	Shuyu Zhac	
6718	Lead - Dissolved	0.0034	g/m³		17/10/2020	Shuyu Zhao	
6721	Manganese - Dissolved	1.09	g/m³		17/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	0.107	g/m³		17/10/2020	Shuyu Zhao	
6726	Potassium - Dissolved	642	g/m³		17/10/2020	Shuyu Zhao	
6738	Zinc - Dissolved	0.076	g/m³		17/10/2020	Shuyu Zhao	
M0104		24 13 *	cfu/100mL		15/10/2020	Maria Norris	
	Volatile Fatty Acids		g/m³				anscribed by
	Total Halogenated Phenolics	< 0.05	g/m³		46/40/2020		anscribed by
P1859	Sample Filtration	Completed	ma/l		16/10/2020	Robyn Mad	-
	I 2,3-Diuron	<0.001	mg/L		16/10/2020	Dr Alan Sta	
SVOC-002	2 a-внс 3 a-chlordane	<0.0001 <0.0001	mg/L		16/10/2020 16/10/2020	Dr Alan Sta	
SVOC-003		<0.001	mg/L mg/L		16/10/2020	Dr Alan Sta Dr Alan Sta	
SVOC-002 SVOC-005		<0.001	mg/L		16/10/2020	Dr Alan Sta	
	S cis-Permethrin	<0.0001	mg/L		16/10/2020	Dr Alan Sta	
SVOC-006 SVOC-007		<0.0001	mg/L		16/10/2020	Dr Alan Sta	-
	B Endosulfan II	<0.0001	mg/L		16/10/2020	Dr Alan Sta	-
	endosulfan II Endosulfan Sulfate	<0.005	mg/L		16/10/2020	Dr Alan Sta	-
SVOC-008 SVOC-010		<0.0001	-		16/10/2020	Dr Alan Sta	
	Endrin Aldehyde	<0.001	mg/L mg/L		16/10/2020	Dr Alan Sta	
	PEndrin Ketone	<0.001	mg/L		16/10/2020		•

SVOC-012 Endrin Ketone

SVOC-013 Gamma-Chlordane

< 0.0001

< 0.001

mg/L

mg/L

16/10/2020

16/10/2020

Dr Alan Stanley KTP

Dr Alan Stanley KTP

Test Date Signatory SVOC-014 Hispatchic -0.0001 mpl. 16102020 Proceed Proceedings -0.0001 mpl. 16102020 Proceedings -0.0001 mp	Sample Site 20/40302-28 Levin Leachate Notes: 191389-0 Levin Landfill Sample	Pond	Map Ref.	Date Sampled 15/10/2020 00:00		eceived 2020 14:30	Order No.
SVOC-014 Heptachlor	·	Regult	Unite		Test Date	Signatory	
SVOC-016 Heptanoline Epoxide							nlav KTP
SVOC-016 Heachtorobenzene	•		-				
SVOC-018 Methowsphor Co.0001 mg/L 1610/2020 Dr. Alan Starley KTP	·		•				•
SVOC-019 Methoxychior			•				
SVOC-020 p.P-DDE	, ,						
SVOC-021 p.ODDE	•						-
SVOC-022 Propositione	• •	< 0.0001	•			Dr Alan Star	nley KTP
SVOC-022 Propymidone	• •	<0.001			16/10/2020		-
SVOC-024 Endosulfan 0.001 mg/L 18/10/2020 Dr. Alan Starley KTP	SVOC-022 Procymidone	< 0.0001			16/10/2020	Dr Alan Star	nley KTP
SVOC-025 Alachlor	SVOC-023 Propanil	< 0.001	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-026 Addicarb	SVOC-024 Endosulfan I	< 0.001	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-027 Arrazine	SVOC-025 Alachlor	< 0.0001	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-028 Entonurari	SVOC-026 Aldicarb	<0.1	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-029 Carboduran 0.015 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-030 Cyanazine -0.005 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-032 Metalosyl-M -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-032 Metalosyl-M -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-035 Metaloshofor -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-035 Metaloshofor -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-037 Oxadiazon -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-038 Propazine -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-043 Syriproxyfen -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-043 Tyriproxyfen -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-043 Tyriproxyfen -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP SVOC-043 Tyriproxyfen -0.0001 mgL 18/10/2020 Dr. Alan Stanley KTP <td< td=""><td>SVOC-027 Atrazine</td><td>< 0.0001</td><td>mg/L</td><td></td><td>16/10/2020</td><td>Dr Alan Star</td><td>nley KTP</td></td<>	SVOC-027 Atrazine	< 0.0001	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-030 Cyanazine d.0001 mg/L 18/10/2020 Dr. Alan Stanley KTP SVOC-0312 Metalaxyk-M -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-032 Metalaxyk-M -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-033 Metolachior -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-035 Molinate -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-036 Prodatizor -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-038 Pendimethalin -0.002 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-040 Priproxyfen -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-041 Simazine -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-043 Priproxyfen -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-044 Simazine -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP SVOC-043 Trifluralin -0.0001 mg/L 16/10/2020 Dr. Alan Stanley KTP	SVOC-028 Bromacil	< 0.005	mg/L		16/10/2020	Dr Alan Star	nley KTP
SVOC-031 d/EHC							

Sample Site 20/40302-28 Levin Leachate F Notes: 191389-0 Levin Landfill Sample	Pond	Map Ref.	Date Sampled 15/10/2020 00:00		eceived 2020 14:30	Order No.
Test	Result	Units		Test Date	Signatory	
VOC-008 n-Butylbenezene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	oko KTD
•	< 0.0005	-		16/10/2020	Ganesh Ilan	
VOC-009 n-Propylbenzene		mg/L				
VOC-010 o-Xylene	0.0066	mg/L		16/10/2020	Ganesh Ilan	
VOC-011 p-Isopropyltoluene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-013 sec-Butylbenzene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-014 Styrene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-015 tert-Butylbenzene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-016 Toluene	0.0020	mg/L		16/10/2020	Ganesh Ilan	
VOC-017 Total p,m Xylene, Ethylbenzer		mg/L		16/10/2020	Ganesh Ilan	
VOC-018 1,1,1,2-Tetrachloroethane	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-019 1,1,1-Trichloroethane	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-020 1,1,2,2-Tetrachloroethane	<0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-021 1,1,2-Trichloroethane	<0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-022 1,1-Dichloroethane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-023 1,1-Dichloroethene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-024 1,1-Dichloropropene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-025 1,2,3-Trichloropropane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-026 1,2-Dibromo-3-chloropropane	< 0.001	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-027 1,2-Dibromoethane	< 0.0002	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-028 1,2-Dichloroethane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-029 1,2-Dichloropropane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-030 1,3-Dichloropropane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-031 2,2-Dichloropropane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-032 Allyl chloride	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-033 Bromochloromethane	<0.0012	mg/L		16/10/2020	Ganesh Ilan	
VOC-034 Bromomethane	<0.001	mg/L		16/10/2020	Ganesh Ilan	
VOC-035 Carbon tetrachloride	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-036 Chloroethane	<0.001	mg/L		16/10/2020	Ganesh Ilan	
VOC-037 Chloromethane	< 0.006	mg/L		16/10/2020	Ganesh Ilan	
VOC-038 cis-1,2-Dichloroethene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-039 cis-1,3-Dichloropropene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-040 Dibromomethane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-040 Diblomorifluoromethane	<0.001	mg/L		16/10/2020	Ganesh Ilan	
VOC-041 Dichloromethane	< 0.006	mg/L		16/10/2020	Ganesh Ilan	
	< 0.000	•			Ganesh Ilan	
VOC-043 Hexachlorobutadiene		mg/L		16/10/2020		
VOC-044 Tetrachloroethene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-045 trans-1,2-Dichloroethene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-046 trans-1,3-Dichloropropene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-047 Trichloroethene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-048 Trichlorofluoromethane	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-049 Vinyl Chloride	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-050 1,2,3-Trichlorobenzene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-051 1,2,4-Trichlorobenzene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-052 1,2-Dichlorobenzene	< 0.0010	mg/L		16/10/2020	Ganesh Ilan	
VOC-053 1,3-Dichlorobenzene	< 0.0010	mg/L		16/10/2020	Ganesh Ilan	
VOC-054 1,4-Dichlorobenzene	< 0.0010	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-055 2-Chlorotoluene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-056 4-Chlorotoluene	<0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-057 Bromobenzene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-058 Chlorobenzene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-059 1,3,5-Trichlorobenzene	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-060 4-Methyl-2-Pentanone	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-061 Carbon disulphide	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-062 Bromodichloromethane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	cko KTP
VOC-063 Bromoform	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-064 Chloroform	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	
VOC-065 Dibromochloromethane	< 0.0005	mg/L		16/10/2020	Ganesh Ilan	
		•		_		

Sample 20/40302 Notes: 19	Site -29 Levin HS1 1390-0 Levin Landfill Sample		Map Ref.	Date Sampled 15/10/2020 00:00		eceived 2020 14:30	Order No.
	Test	Result	Units		Test Date	Signatory	
0001	pH	7.8			16/10/2020	Marylou Ca	bral KTP
0002	Suspended Solids - Total	18	g/m³		16/10/2020	Marylou Ca	bral KTP
0040	Total (NP) Organic Carbon	8.0	g/m³		16/10/2020	Sharon van	Soest KTP
0052	Alkalinity - Total	44	g CaCO3/m³		16/10/2020	Marylou Ca	bral KTP
0055	Conductivity at 25°C	22.5	mS/m		16/10/2020	Marylou Ca	bral KTP
0081	Chemical Oxygen Demand	34	g/m³		16/10/2020	Gordon Mc	Arthur KTP
0180	BOD5 - Soluble Carbonaceous	< 1	g/m³		16/10/2020	Marylou Ca	bral KTP
0602	Chloride	22.3	g/m³		16/10/2020	Shanel Kum	nar KTP
0605	Nitrate - Nitrogen	0.80	g/m³		16/10/2020	Shanel Kum	nar KTP
0607	Sulphate	20.0	g/m³		16/10/2020	Shanel Kum	nar KTP
0760	Ammonia Nitrogen	0.04	g/m³		21/10/2020	Athena Cad	KTP
1642	Total Hardness	60	g CaCO3/m³		16/10/2020	Amit Kumar	KTP
1810	Calcium - Dissolved	12.9	g/m³		16/10/2020	Amit Kumar	KTP
1819	Iron - Dissolved	0.041	g/m³		16/10/2020	Amit Kumar	KTP
1822	Magnesium - Dissolved	6.81	g/m³		16/10/2020	Amit Kumar	KTP
1834	Sodium - Dissolved	18.3	g/m³		16/10/2020	Amit Kumar	KTP
2088	Dissolved Reactive Phosphorus	s< 0.005	g/m³		21/10/2020	Athena Cad	KTP
6701	Aluminium - Dissolved	0.017	g/m³		17/10/2020	Shanel Kum	nar KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao	KTP
6707	Boron - Dissolved	0.07	g/m³		17/10/2020	Shuyu Zhao	KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/10/2020	Shuyu Zhao	KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao	KTP
6713	Copper - Dissolved	0.0017	g/m³		17/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.0083	g/m³		17/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6726	Potassium - Dissolved	2.89	g/m³		17/10/2020	Shuyu Zhao	KTP
6738	Zinc - Dissolved	< 0.002	g/m³		17/10/2020	Shuyu Zhao	KTP
M0104	E. coli	410	cfu/100mL		15/10/2020	Maria Norris	s KTP
MO-5001	Volatile Fatty Acids	< 5 *	g/m³			Chen Lin Tr	anscribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Chen Lin Tr	anscribed by
P1859	Sample Filtration	Completed			16/10/2020	Robyn Mad	ge .
Sample 20/40302	Site -30 Levin HS1A		Map Ref.	Date Sampled 15/10/2020 00:00		eceived 2020 14:30	Order No.

Sample	Site	мар кет.	Date Sampled	Date Received	Order No.
20/40302-30	Levin HS1A	-	15/10/2020 00:00	15/10/2020 14:30	0
Notes: 191391-0 Le	vin Landfill Sample				
Test	Result	Units		Test Date Signatory	

		Test	Result	Units	Test Date	Signatory
00	001	рН	7.8		16/10/2020	Marylou Cabral KTP
00	002	Suspended Solids - Total	18	g/m³	16/10/2020	Marylou Cabral KTP
00	040	Total (NP) Organic Carbon	8.3	g/m³	16/10/2020	Sharon van Soest KTP
00	052	Alkalinity - Total	44	g CaCO3/m³	16/10/2020	Marylou Cabral KTP
00	055	Conductivity at 25°C	22.3	mS/m	16/10/2020	Marylou Cabral KTP
00	081	Chemical Oxygen Demand	35	g/m³	16/10/2020	Gordon McArthur KTP
01	180	BOD5 - Soluble Carbonaceous	< 1	g/m³	16/10/2020	Marylou Cabral KTP
06	302	Chloride	21.6	g/m³	16/10/2020	Shanel Kumar KTP
06	305	Nitrate - Nitrogen	0.77	g/m³	16/10/2020	Shanel Kumar KTP
06	607	Sulphate	19.4	g/m³	16/10/2020	Shanel Kumar KTP
07	760	Ammonia Nitrogen	0.02	g/m³	21/10/2020	Athena Cao KTP
16	642	Total Hardness	62	g CaCO3/m³	16/10/2020	Amit Kumar KTP
18	310	Calcium - Dissolved	13.4	g/m³	16/10/2020	Amit Kumar KTP
18	319	Iron - Dissolved	0.065	g/m³	16/10/2020	Amit Kumar KTP
18	322	Magnesium - Dissolved	7.01	g/m³	16/10/2020	Amit Kumar KTP
18	334	Sodium - Dissolved	18.7	g/m³	16/10/2020	Amit Kumar KTP
20	380	Dissolved Reactive Phosphorus	s< 0.005	g/m³	21/10/2020	Athena Cao KTP
67	701	Aluminium - Dissolved	0.022	g/m³	17/10/2020	Shanel Kumar KTP
67	703	Arsenic - Dissolved	< 0.001	g/m³	17/10/2020	Shuyu Zhao KTP
67	707	Boron - Dissolved	0.06	g/m³	17/10/2020	Shuyu Zhao KTP
67	708	Cadmium - Dissolved	< 0.0002	g/m³	17/10/2020	Shuyu Zhao KTP
67	711	Chromium - Dissolved	< 0.001	g/m³	17/10/2020	Shuyu Zhao KTP
67	713	Copper - Dissolved	0.0016	g/m³	17/10/2020	Shuyu Zhao KTP

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 12 of 18 Report Number: 20/40302-1 ELS 10 November 2020 17:24:18

Sample	Site		Map Ref.	Date Sampled		eceived	Order No.
20/40302 Notes: 19	2-30 Levin HS1A 91391-0 Levin Landfill Sample			15/10/2020 00:00	15/10/2	2020 14:30	0
Notes. 13	Test	Result	Units		Test Date	Signatory	
6718	Lead - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.0109	g/m³		17/10/2020	Shuyu Zhao	
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	
6724	Nickel - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	
6726	Potassium - Dissolved	2.79	g/m³		17/10/2020	Shuyu Zhao	
6738	Zinc - Dissolved	< 0.002	g/m³		17/10/2020	Shuyu Zhao	
M0104	E. coli	600	cfu/100mL		15/10/2020	Maria Norris	
MO-5001	Volatile Fatty Acids	< 5 *	g/m³			Chen Lin Tra	anscribed by
	2 Total Halogenated Phenolics	< 0.05	g/m³			Chen Lin Tra	
P1859	Sample Filtration	Completed			16/10/2020	Robyn Madg	e .
Sample	Site		Map Ref.	Date Sampled	Date R	eceived	Order No.
20/40302			·	15/10/2020 00:00	15/10/2	2020 14:30	0
Notes: 19	91392-0 Levin Landfill Sample						
	Test	Result	Units		Test Date	Signatory	
0001	pН	7.8			16/10/2020	Marylou Cab	
0002	Suspended Solids - Total	20	g/m³		16/10/2020	Marylou Cab	
0040	Total (NP) Organic Carbon	7.9	g/m³		16/10/2020	Sharon van	
0052	Alkalinity - Total	47	g CaCO3/m³		16/10/2020	Marylou Cab	
0055	Conductivity at 25°C	23.0	mS/m		16/10/2020	Marylou Cab	
0081	Chemical Oxygen Demand	31	g/m³		16/10/2020	Gordon McA	
0180	BOD5 - Soluble Carbonaceous		g/m³		16/10/2020	Marylou Cab	
0602	Chloride	22.4	g/m³		16/10/2020	Shanel Kum	
0605	Nitrate - Nitrogen	0.78	g/m³		16/10/2020	Shanel Kum	
0607 0760	Sulphate	19.4 0.08	g/m³		16/10/2020 21/10/2020	Shanel Kuma Athena Cao	
1642	Ammonia Nitrogen Total Hardness	60	g/m³ g CaCO3/m³		16/10/2020	Amit Kumar	
1810	Calcium - Dissolved	12.9	g/m³		16/10/2020	Amit Kumar	
1819	Iron - Dissolved	0.043	g/m³		16/10/2020	Amit Kumar	
1822	Magnesium - Dissolved	6.77	g/m³		16/10/2020	Amit Kumar	
1834	Sodium - Dissolved	18.4	g/m³		16/10/2020	Amit Kumar	
2088	Dissolved Reactive Phosphoru		g/m³		21/10/2020	Athena Cao	
6701	Aluminium - Dissolved	0.020	g/m³		17/10/2020	Shanel Kum	
6703	Arsenic - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao	
6707	Boron - Dissolved	0.06	g/m³		17/10/2020	Shuyu Zhao	
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/10/2020	Shuyu Zhao	
6711	Chromium - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao	
6713	Copper - Dissolved	0.0015	g/m³		17/10/2020	Shuyu Zhao	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6721	Manganese - Dissolved	0.0139	g/m³		17/10/2020	Shuyu Zhao	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao	KTP
6726	Potassium - Dissolved	2.96	g/m³		17/10/2020	Shuyu Zhao	
6738	Zinc - Dissolved	< 0.002	g/m³		17/10/2020	Shuyu Zhao	
M0104		210	cfu/100mL		15/10/2020	Maria Norris	
	Volatile Fatty Acids	< 5 *	g/m³			Chen Lin Tra	•
	2 Total Halogenated Phenolics	< 0.05	g/m³			Chen Lin Tra	•
P1859	Sample Filtration	Completed			16/10/2020	Robyn Madg	e .
Sample	Site		Map Ref.	Date Sampled	Date R	eceived	Order No.
20/40302				15/10/2020 00:00	15/10/2	2020 14:30	0
inotes: 19	91393-0 Levin Landfill Sample	D !'	11.56		T . 15 .	01 1	
0001	Test	Result	Units		Test Date	Signatory	LVTD
0001	pH Supported Solids Total	7.7	a. l 2		16/10/2020	Marylou Cab	
0002	Suspended Solids - Total	19	g/m³		16/10/2020	Marylou Cab	
0040	Total (NP) Organic Carbon	8.0	g/m³		16/10/2020	Sharon van	
0052	Alkalinity - Total	46	g CaCO3/m³		16/10/2020	Marylou Cab	
0055	Conductivity at 25°C	23.0	mS/m		16/10/2020	Marylou Cab	
0081 0180	Chemical Oxygen Demand BOD5 - Soluble Carbonaceous	32	g/m³		16/10/2020 16/10/2020	Gordon McA	
0180 0602	Chloride	5 < 1 22.5	g/m³		16/10/2020 16/10/2020	Marylou Cab Shanel Kum	
0602	Nitrate - Nitrogen	0.79	g/m³ g/m³		16/10/2020	Shanel Kum	
0000	iviliale - iviliogell	0.13	9/1113		10/10/2020	Shanel Kulli	ai NTF

Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227 Dunedin 16 Lorne Street South Dunedin 9012 Phone: (03) 972-7963

Page 13 of 18 Report Number: 20/40302-1 ELS

Sample 20/40302 Notes: 19	Site -32 Levin HS3 1393-0 Levin Landfill Sample	N	lap Ref.	Date Sampled 15/10/2020 00:00	Date Re 15/10/20	eceived 020 14:30	Order No.
	Test	Result	Units		Test Date	Signatory	
0607	Sulphate	19.5	g/m³		16/10/2020	Shanel Kuma	r KTP
0760	Ammonia Nitrogen	0.06	g/m³		17/10/2020	Divina Lagazo	on KTP
1642	Total Hardness	62	g CaCO3/m³		16/10/2020	Amit Kumar k	TP
1810	Calcium - Dissolved	13.5	g/m³		16/10/2020	Amit Kumar k	TP
1819	Iron - Dissolved	0.069	g/m³		16/10/2020	Amit Kumar k	TP
1822	Magnesium - Dissolved	6.99	g/m³		16/10/2020	Amit Kumar k	TP
1834	Sodium - Dissolved	19.1	g/m³		16/10/2020	Amit Kumar k	TP
2088	Dissolved Reactive Phosphoru	s< 0.005	g/m³		17/10/2020	Divina Lagazo	on KTP
6701	Aluminium - Dissolved	0.022	g/m³		17/10/2020	Shanel Kuma	r KTP
6703	Arsenic - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao k	KTP
6707	Boron - Dissolved	0.06	g/m³		17/10/2020	Shuyu Zhao k	KTP
6708	Cadmium - Dissolved	< 0.0002	g/m³		17/10/2020	Shuyu Zhao k	KTP
6711	Chromium - Dissolved	< 0.001	g/m³		17/10/2020	Shuyu Zhao k	KTP
6713	Copper - Dissolved	0.0015	g/m³		17/10/2020	Shuyu Zhao k	KTP
6718	Lead - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao k	KTP
6721	Manganese - Dissolved	0.0176	g/m³		17/10/2020	Shuyu Zhao k	KTP
6722	Mercury - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao k	KTP
6724	Nickel - Dissolved	< 0.0005	g/m³		17/10/2020	Shuyu Zhao k	KTP
6726	Potassium - Dissolved	3.09	g/m³		17/10/2020	Shuyu Zhao k	KTP
6738	Zinc - Dissolved	< 0.002	g/m³		17/10/2020	Shuyu Zhao k	KTP
M0104	E. coli	310	cfu/100mL		15/10/2020	Maria Norris I	KTP
MO-5001	Volatile Fatty Acids	< 5 *	g/m³			Chen Lin Trai	nscribed by
MO-5002	Total Halogenated Phenolics	< 0.05	g/m³			Chen Lin Trai	nscribed by
P1859	Sample Filtration	Completed			16/10/2020	Robyn Madge	.

Comments:

Sampled by customer using ELS approved containers.

Test Methodology:

Test	Methodology	Detection Limit
pH	Dedicated pH meter following APHA Online Edition Method 4500-H B.	0.1
Suspended Solids - Total	APHA Online Edition Method 2540 D	3 g/m³
Total (NP) Organic Carbon	Total Non-Purgeable Organic Carbon using TOC analyser. APHA Online Edition 5310 B.	0.1 g/m³
Alkalinity - Total	APHA Online Edition Method 2320 B	1 g CaCO3/m³
Conductivity at 25°C	APHA Online Edition Method 2510 B.	0.1 mS/m
Chemical Oxygen Demand	APHA Online Edition Method 5220 D.	15 g/m³
BOD5 - Soluble Carbonaceous	APHA Online Edition Method 5210 B. The sample is filtered through Whatman GFC and treated with nitrification inhibitor.	1 g/m³
Chloride	Ion Chromatography following APHA 4110B.	0.02 g/m³
Nitrate - Nitrogen	Ion Chromatography following APHA 4110B.	0.01 g/m³
Sulphate	Ion Chromatography following APHA 4110B.	0.02 g/m³
Ammonia Nitrogen	Flow Injection Autoanalyser following APHA Online Edition Method 4500 NH3-H.	0.01 g/m³
Total Hardness	ICP-OES following APHA Online Edition Method 3120 B (modified).	1 g CaCO3/m³
Calcium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Iron - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.005 g/m³
Magnesium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.01 g/m³
Sodium - Dissolved	ICP-OES following APHA Online Edition Method 3120 B (modified).	0.02 g/m³
Dissolved Reactive Phosphorus	Flow Injection Autoanalyser following APHA Online Edition Method 4500-P G.	0.005 g/m³
Aluminium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
Arsenic - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Boron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.03 g/m³
Cadmium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0002 g/m³
Chromium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.001 g/m³
Copper - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Iron - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.01 g/m³
Lead - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m ³

^{*} Not an accredited test.

Test	Methodology	Detection Limit
Manganese - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Mercury - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Nickel - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.0005 g/m³
Potassium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Sodium - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified)	0.01 g/m³
Zinc - Dissolved	ICP-MS following APHA Online Edition method 3125 (modified).	0.002 g/m³
E. coli	APHA 9222I:Online Edition	1 cfu/100mL
Volatile Fatty Acids	Performed by Eurofins Melbourne following APHA 22nd Edition Method 5560C. Results are reported as acetic acid equivalent.	5 g/m³
Total Halogenated Phenolics	Analyses at Eurofins Melbourne following Method USEPA 8270 Phenols.	0.01 g/m³
Sample Filtration	Sample filtered through 0.45 micron filter following APHA Online Edition Method 3030B.	n/a
2,3-Diuron	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
a-BHC	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
a-chlordane	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Aldrin	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
b-BHC	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
cis-Permethrin	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Dieldrin	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Endosulfan II	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.005 mg/L
Endosulfan Sulfate	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Endrin	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Endrin Aldehyde	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Endrin Ketone	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Gamma-Chlordane	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Heptachlor	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Heptachlor Epoxide	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Hexachlorobenzene	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Lindane (g-BHC)	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Methoxychlor	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
p,p'-DDD	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
p,p'DDE	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
p,p'-DDT	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Procymidone	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Propanil	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Endosulfan I	Organochlorine Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Alachlor	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Aldicarb	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.1 mg/L
Atrazine	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Bromacil	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.005 mg/L
Carbofuran	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Cyanazine	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.005 mg/L
d-BHC	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Metalaxyl-M	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Metolachlor	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Metribuzin	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Molinate	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Oxadiazon	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Pendimethalin	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.002 mg/L
Propazine	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Pyriproxyfen	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Simazine	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Terbuthylazine	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Trifluralin	Organonitrogen Pesticide compound analysed by in-house method using GC-MS Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
		•
Hexazinone	Organonitrogen Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Chlorpyrifos	Organophosphorous Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Diazinon	Organophosphorous Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L
Dimethoate	Organophosphorous Pesticide compound analysed by in-house method using GC-MS	0.001 mg/L
Pirimiphos methyl	Organophosphorous Pesticide compound analysed by in-house method using GC-MS	0.0001 mg/L

Test	Methodology	Detection Limit
Acenapthene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Acenaphthylene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.001 mg/L
Anthracene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.001 mg/L
benz(a)anthracene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Benzo(a)pyrene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Total Benzo(b) and Benzo(k) fluoranthrene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.001 mg/L
Benzo(g,h,i)perylene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.001 mg/L
Chrysene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Dibenz(a,h)anthracene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Fluoranthene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Fluorene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Indeno(1,2,3-cd)pyrene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Naphthalene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Phenanthrene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
Pyrene	Polyaromatic Hydrocarbon compound analysed by in-house method using GC-MS	0.0001 mg/L
2,2',3,4,4',5'-Hexachlorobiphenyl	Polychlorinated biphenyl compound analysed by in-house method using GC-MS. Also known as PCB 138.	0.001 mg/L
2,2',4,5,5'-Pentachlorobiphenyl	Polychlorinated biphenyl compound analysed by in-house method using GC-MS. Also known as PCB 101.	0.0001 mg/L
2,4,4'-Trichlorobiphenyl	Polychlorinated biphenyl compound analysed by in-house method using GC-MS. Also known as PCB 28.	0.0001 mg/L
2,4-Dichlorobiphenyl	Polychlorinated biphenyl compound analysed by in-house method using GC-MS. Also known as PCB 7.	0.0001 mg/L
2,2',3,4,4',5',6-Heptachlorobiphenyl	Polychlorinated biphenyl compound analysed by in-house method using GC-MS. Also known as PCB 183.	0.0001 mg/L
Bis(2-ethylhexyl)adipate	Phthalate Plasticiser compound analysed by in-house method using GC-MS	0.0001 mg/L
1,2,4-Trimethylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,3,5-Trimethylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Benzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Isopropylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Naphthalene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
n-Butylbenezene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
n-Propylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
o-Xylene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
p-Isopropyltoluene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
sec-Butylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Styrene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
tert-Butylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Toluene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Total p,m Xylene, Ethylbenzene	VOC Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0015 mg/L
1,1,1,2-Tetrachloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
, , ,	USEPA Method 8260.	J. T.
1,1,1-Trichloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
	USEPA Method 8260.	
1,1,2,2-Tetrachloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,1,2-Trichloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
,,,_	USEPA Method 8260.	
1,1-Dichloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
,	USEPA Method 8260.	J. T.
1,1-Dichloroethene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
	USEPA Method 8260.	-
1,1-Dichloropropene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,2,3-Trichloropropane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
	USEPA Method 8260.	
1,2-Dibromo-3-chloropropane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.001 mg/L
	USEPA Method 8260.	
1,2-Dibromoethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0002 mg/L
1.2 Dichloroothana		0.0005 ma/l
1,2-Dichloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,2-Dichloropropane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on	0.0005 mg/L
	USEPA Method 8260.	

Test	Methodology	Detection Limit
1,3-Dichloropropane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
2,2-Dichloropropane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Allyl chloride	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Bromochloromethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0012 mg/L
Bromomethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.001 mg/L
Carbon tetrachloride	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260. Also known as Tetrachloromethane.	0.0005 mg/L
Chloroethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.001 mg/L
Chloromethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.006 mg/L
cis-1,2-Dichloroethene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
cis-1,3-Dichloropropene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Dibromomethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Dichlorodifluoromethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.001 mg/L
Dichloromethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.005 mg/L
Hexachlorobutadiene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0002 mg/L
Tetrachloroethene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
trans-1,2-Dichloroethene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
trans-1,3-Dichloropropene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Trichloroethene	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Trichlorofluoromethane	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Vinyl Chloride	VOC Halogenated Alkanes and Alkenes Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,2,3-Trichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,2,4-Trichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,2-Dichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,3-Dichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,4-Dichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
2-Chlorotoluene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
4-Chlorotoluene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Bromobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Chlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
1,3,5-Trichlorobenzene	VOC Halogenated Aromatic Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
4-Methyl-2-Pentanone	VOC Other Volatile Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L

Test	Methodology	Detection Limit
Carbon disulphide	VOC Other Volatile Compound analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Bromodichloromethane	VOC Trihalomethane analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Bromoform	VOC Trihalomethane analysed by GCMS following an in house method based on USEPA Method 8260. Also	0.0005 mg/L
	known as Tribromomethane.	
Chloroform	VOC Trihalomethane analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L
Dibromochloromethane	VOC Trihalomethane analysed by GCMS following an in house method based on USEPA Method 8260.	0.0005 mg/L

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results, for example: sampling information such as date/time, field data etc.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

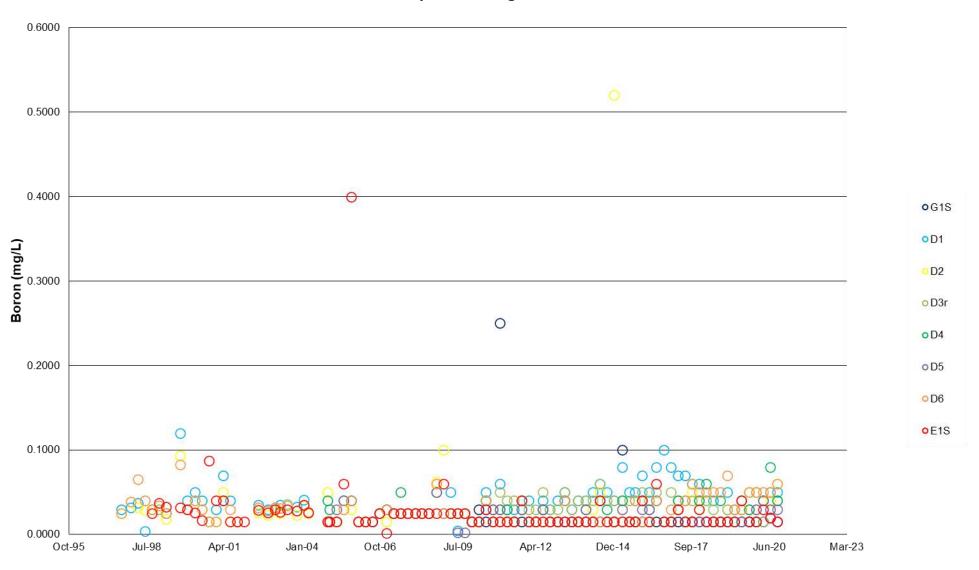
For liquid samples g/m3 is the equivalent to mg/L and ppm, solid samples are reported as mg/kg which is equivalent to ppm.

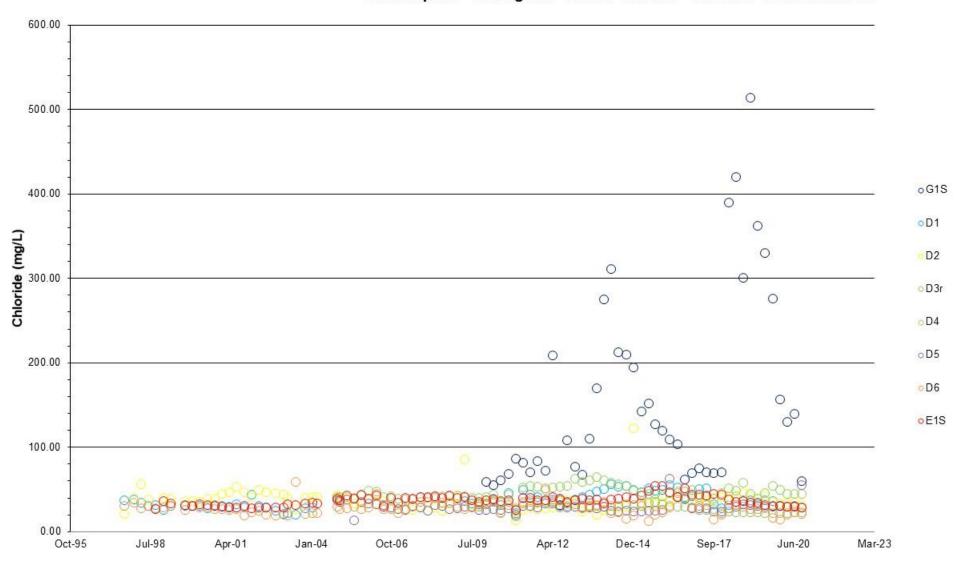
Report Released By Rob Deacon

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

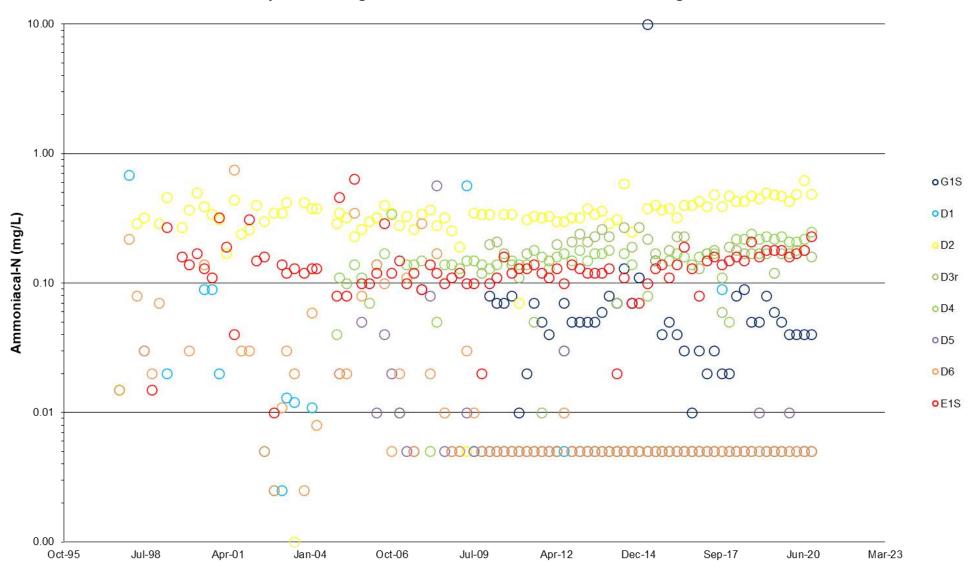
This laboratory is accredited by International Accreditation New Zealand and its reports are recognised in all countries affiliated to the International Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not an accredited test", which are outside the scope of this laboratory's accreditation.

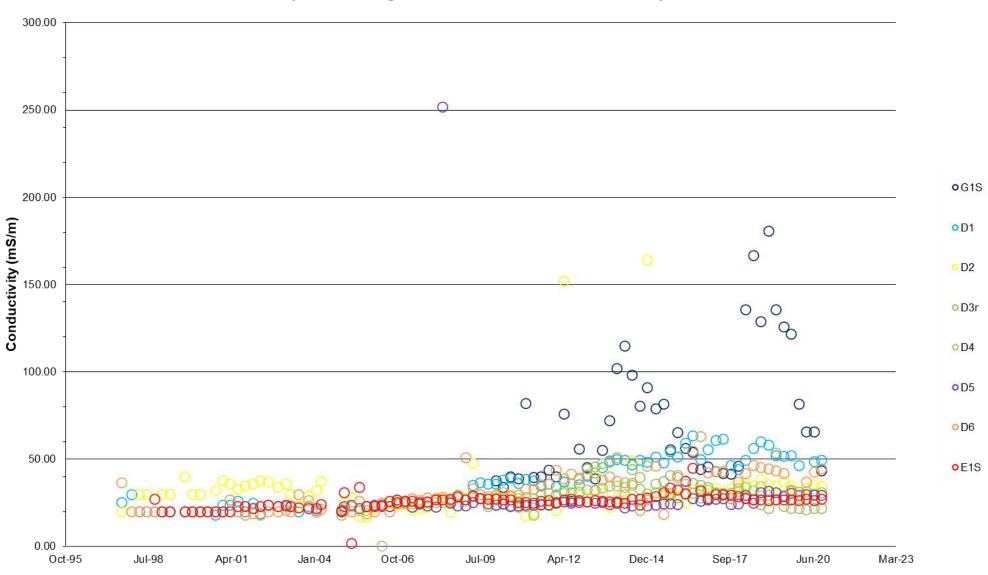
This report may not be reproduced except in full without the written approval of this laboratory.

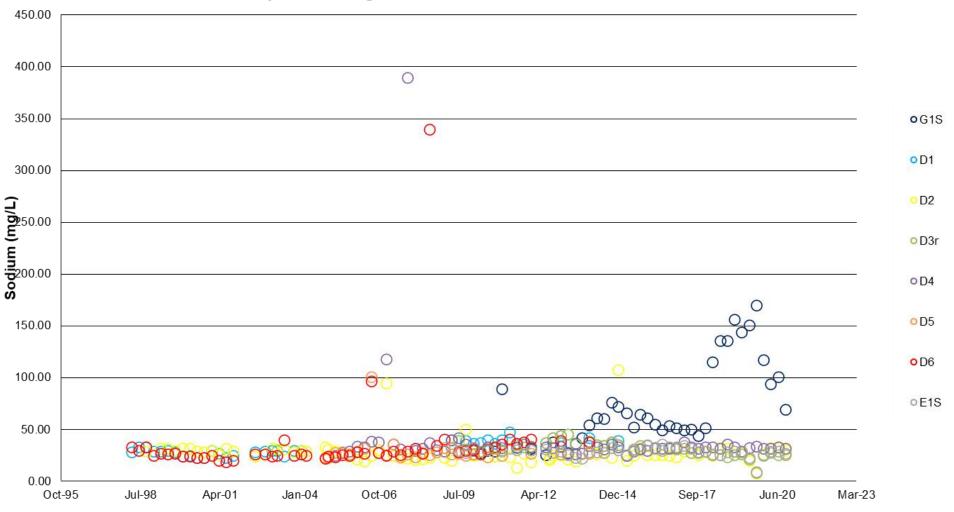


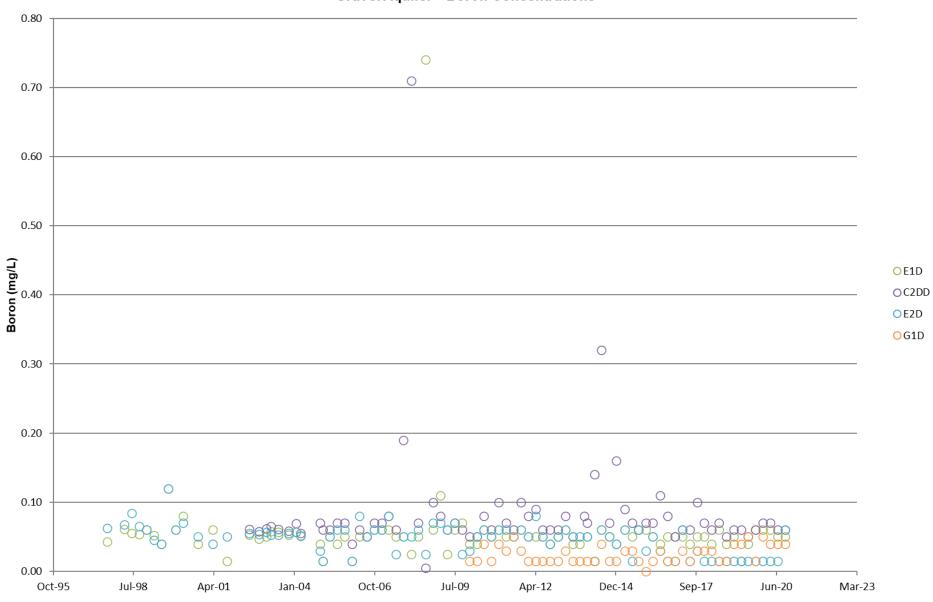

Page 18 of 18

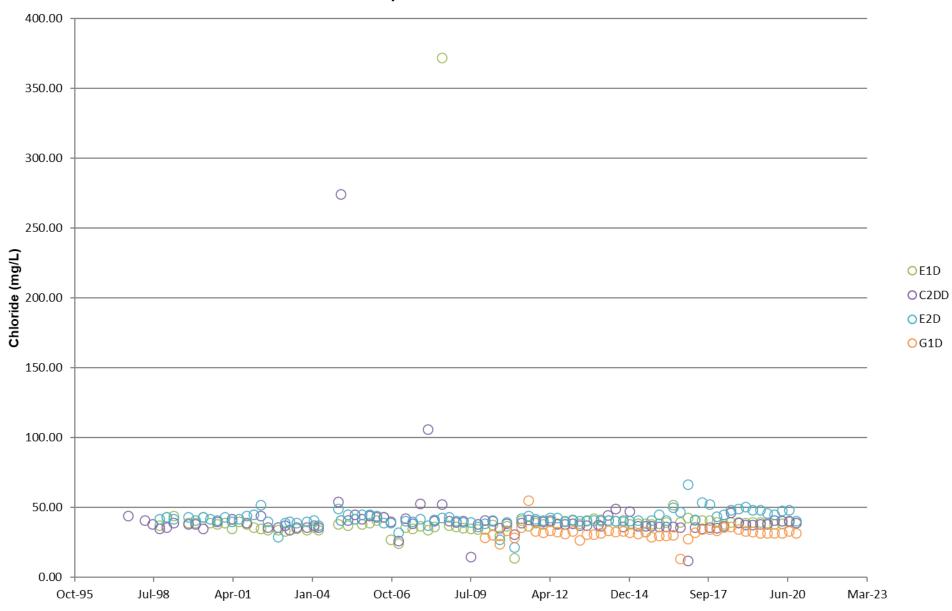
Appendix D Historical Result Graphs

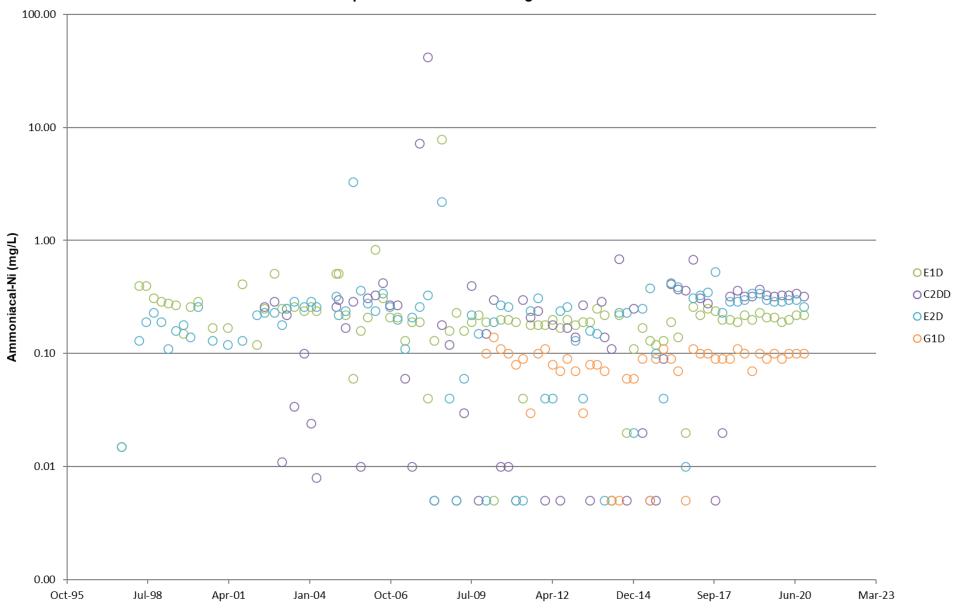

Sand Aquifer Downgrade of New Landfill - Boron Concentrations

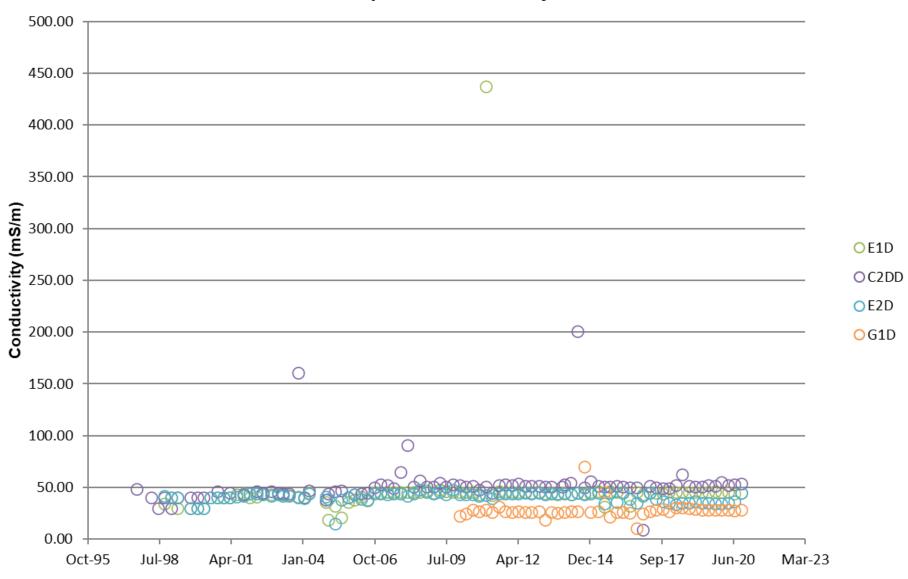

Sand Aquifer Downgrade of New Landfill - Chloride Concentrations

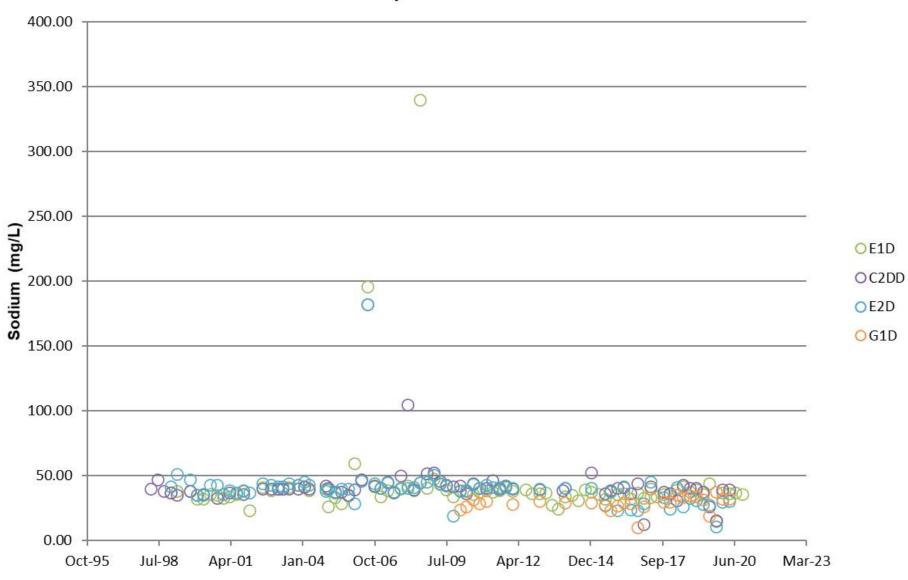

Sand Aquifer Downgrade of New Landfill - Ammoniacal-Nitrogen Concentrations

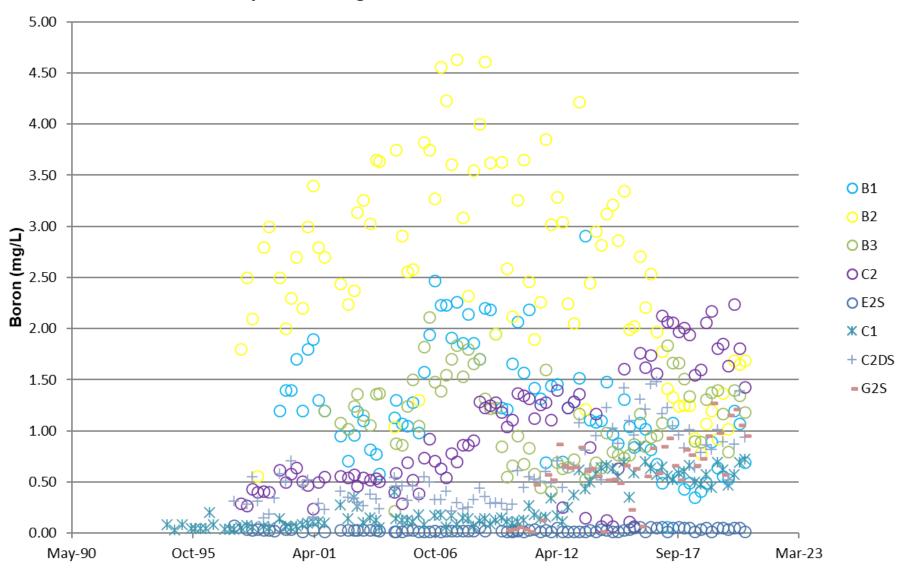

Sand Aquifer Downgrade of New Landfill - Conductivity Levels

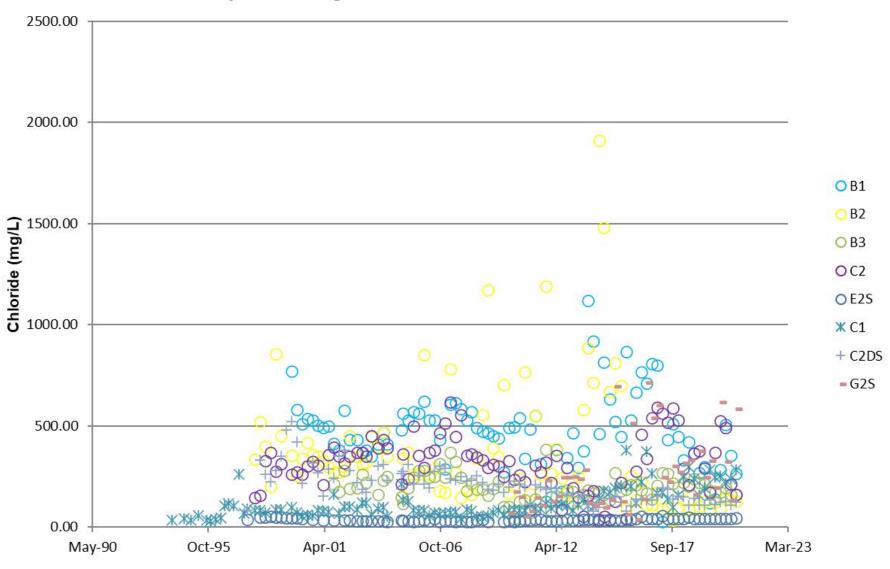

Sand Aquifer Downgrade of New Landfill - Sodium Concentrations

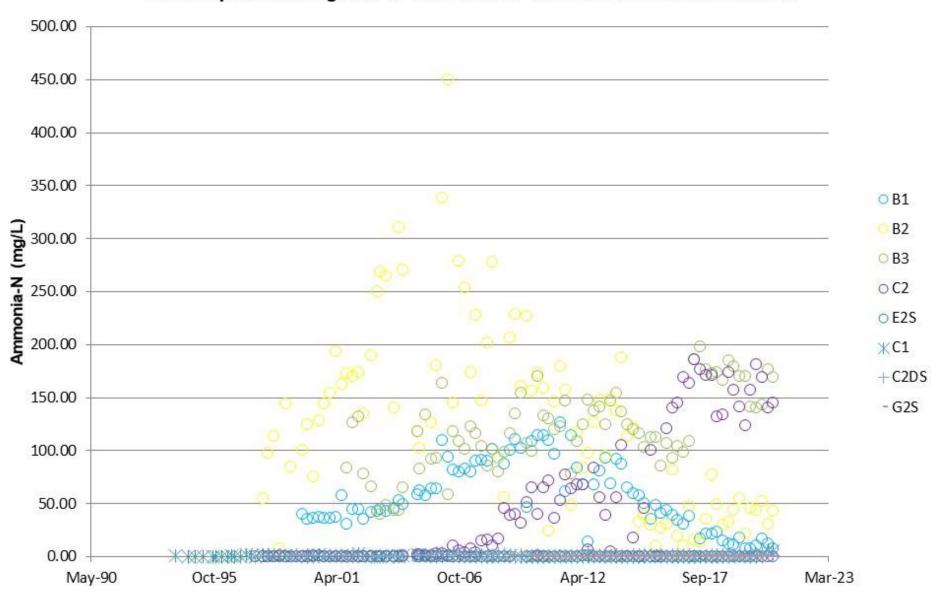

Gravel Aquifer - Boron Concentrations

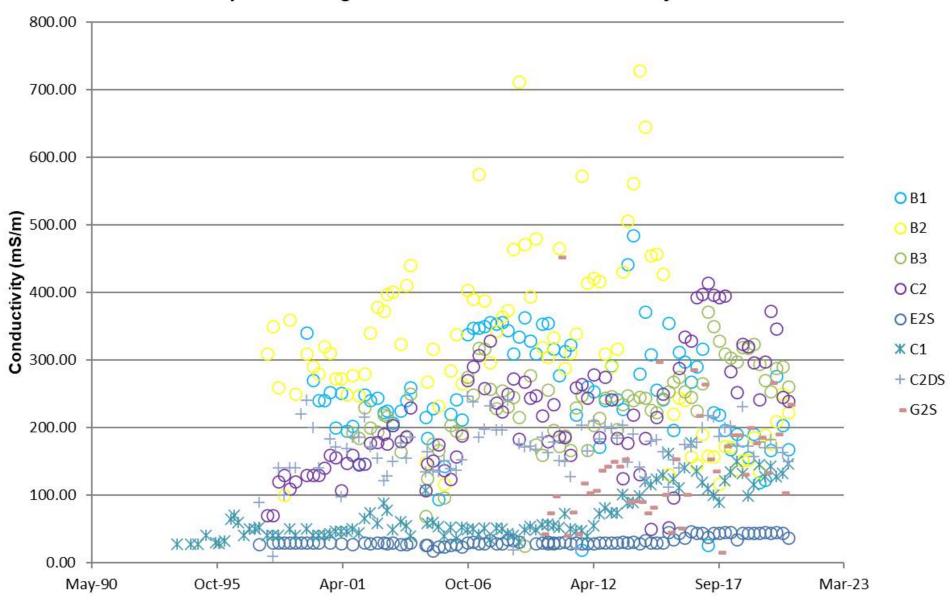

Gravel Aquifer - Chloride Concentrations

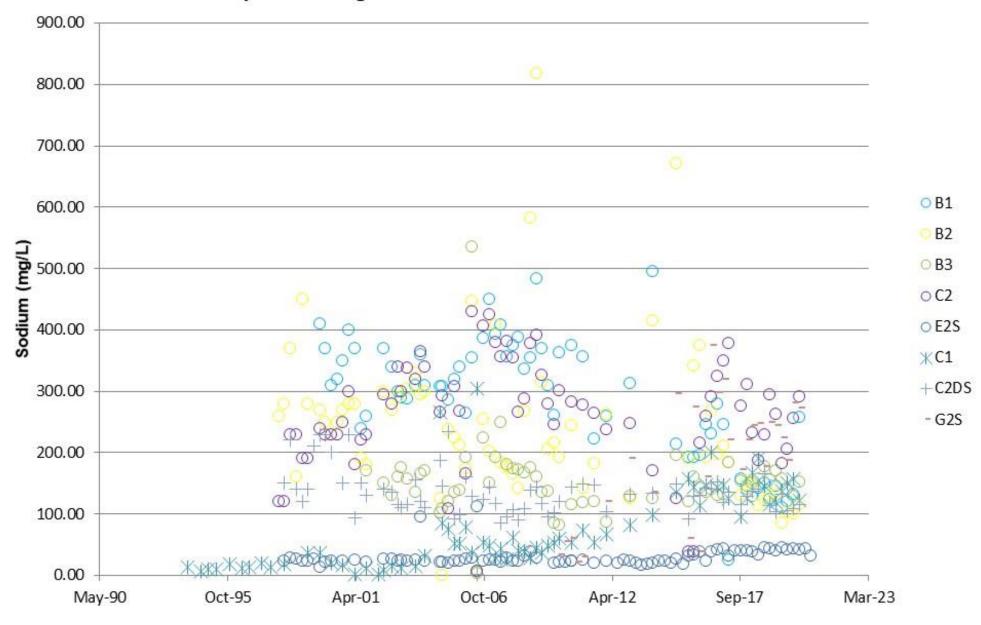

Gravel Aquifer - Ammoniacal-Nitrogen Concentrations

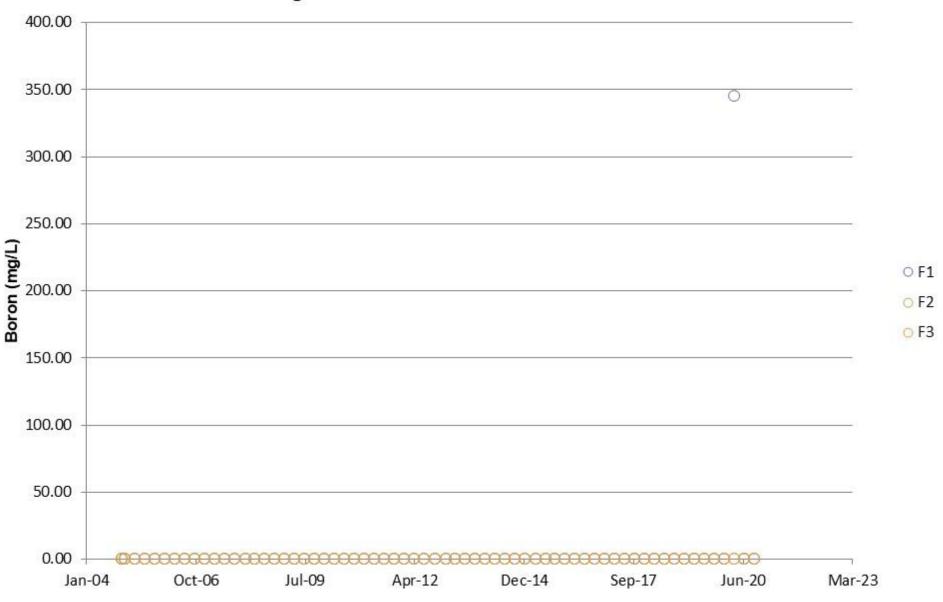

Gravel Aquifer - Conductivity Levels

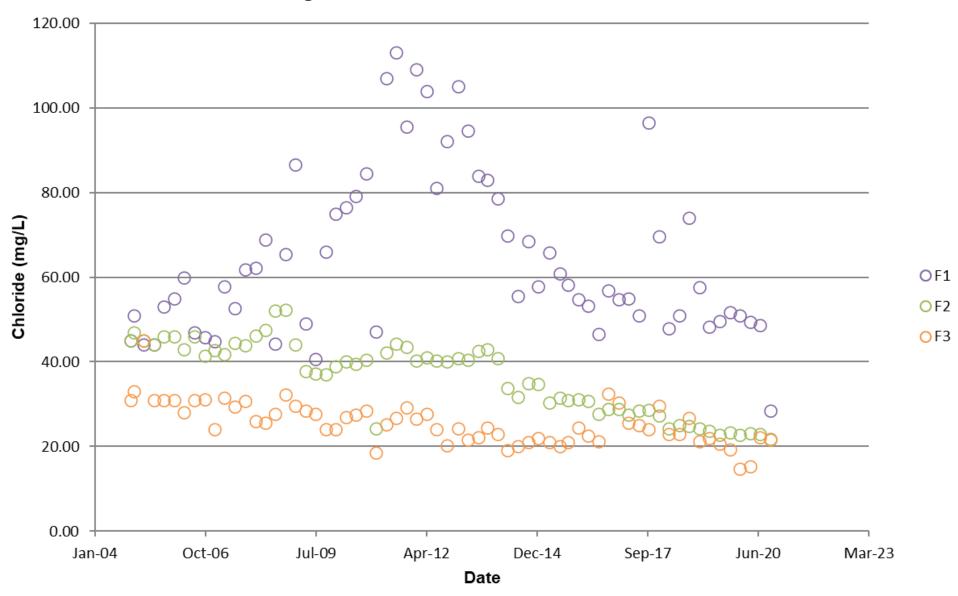

Gravel Aquifer - Sodium Levels

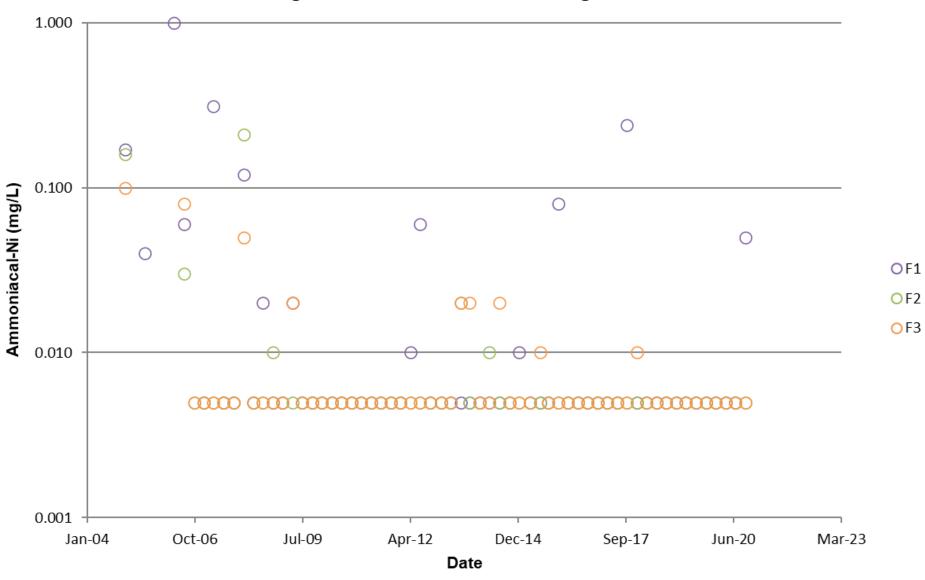

Sand Aquifer Downgrade of Old Landfill - Boron Concentrations

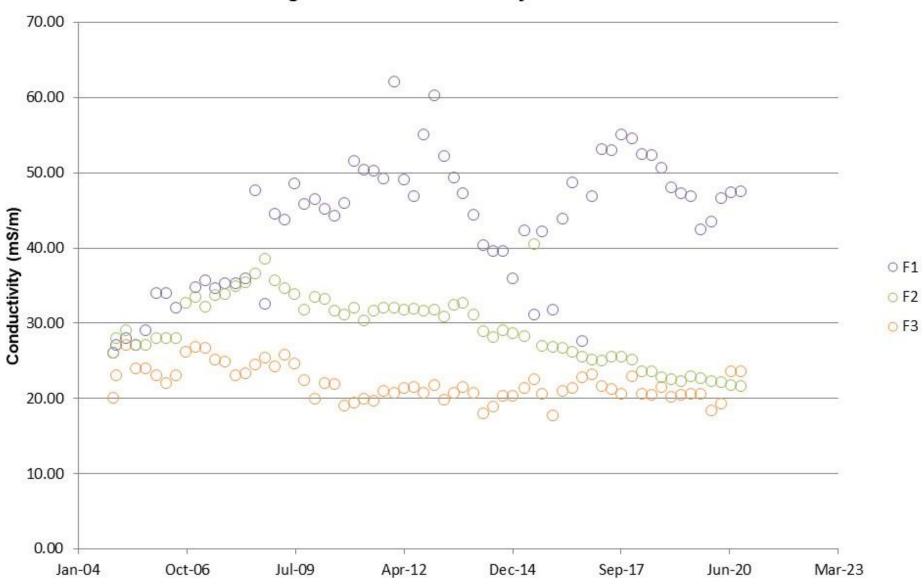

Sand Aquifer Downgrade of Old Landfill - Chloride Concentrations

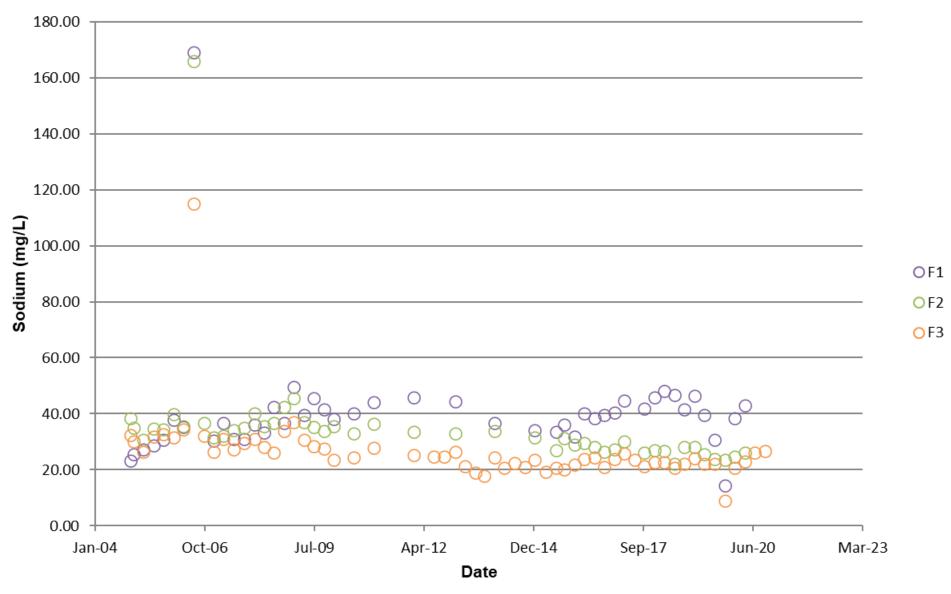

Sand Aquifer Downgrade of Old Landfill - Ammonia-N Concentrations

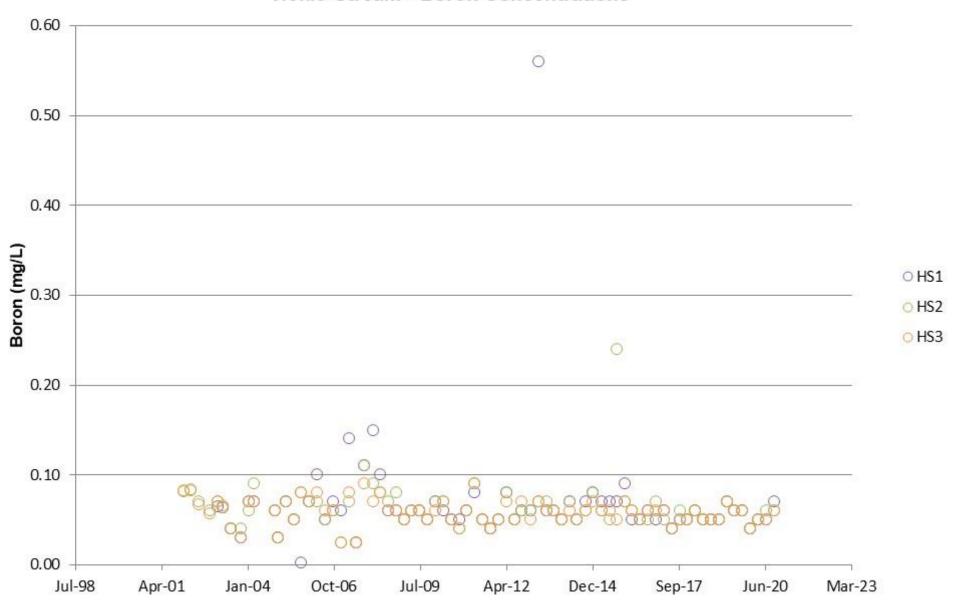

Sand Aquifer Downgrade of Old Landfill - Conductivity Levels

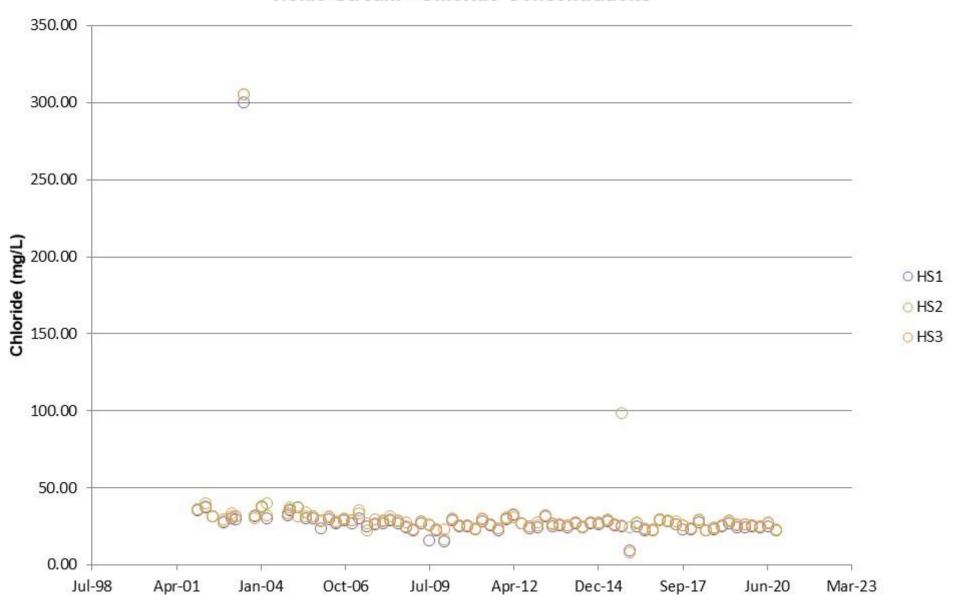

Sand Aquifer Downgrade of Old Landfill - Sodium Concentrations

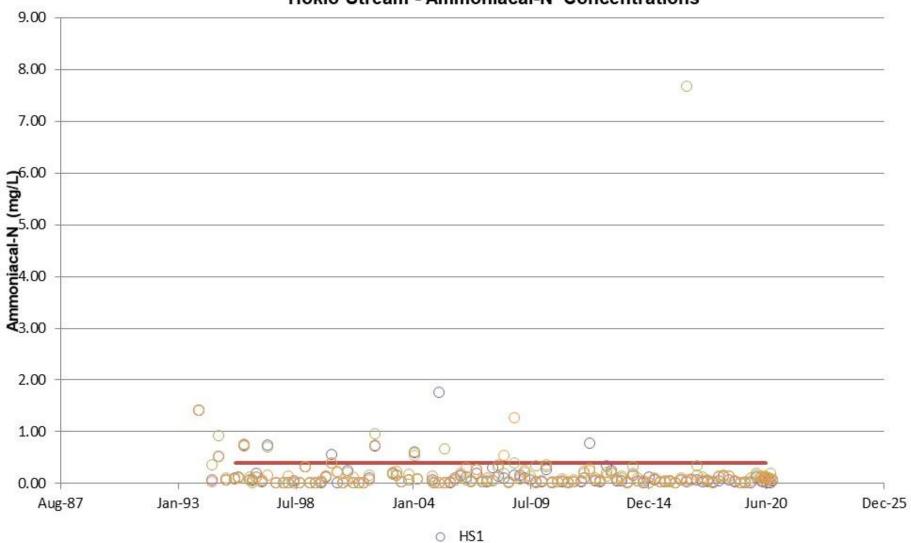

Irrigation Area - Boron Concentrations

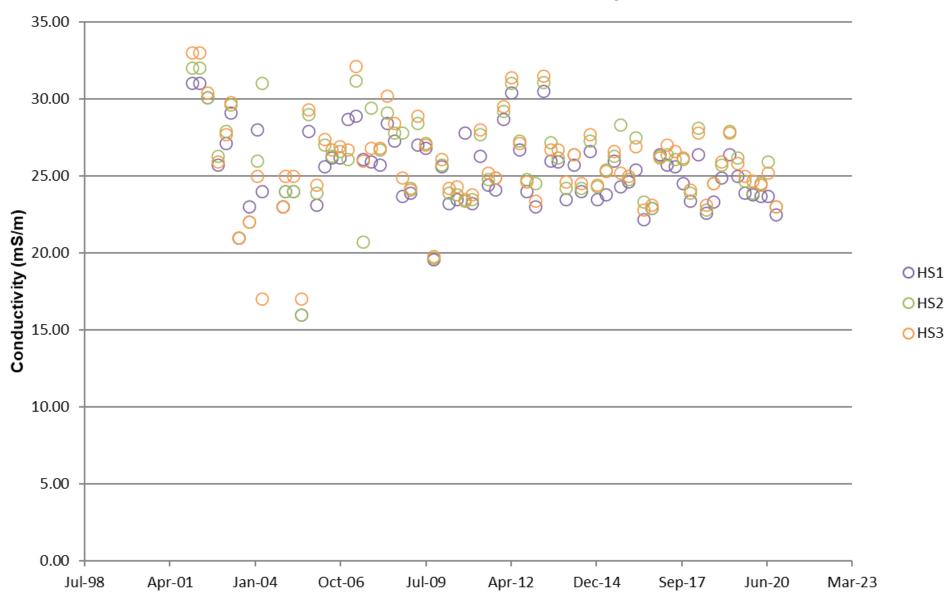

Irrigation Area - Chloride Concentrations

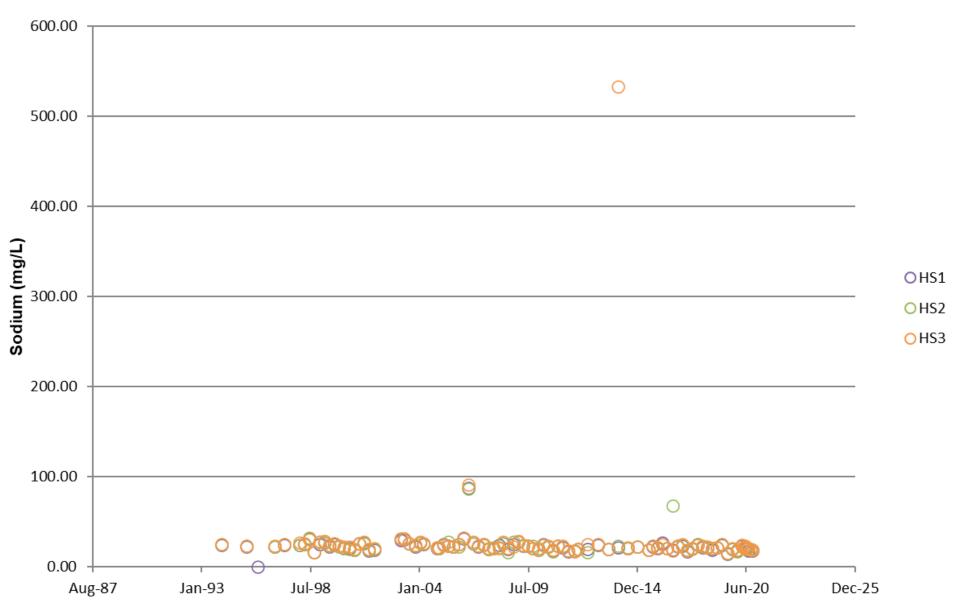

Irrigation Area - Ammoniacal-Nitrogen Concentrations


Irrigation Area - Conductivity Levels


Irrigation Area - Sodium Concentrations


Hokio Stream - Boron Concentrations


Hokio Stream - Chloride Concentrations


Hokio Stream - Ammoniacal-N Concentrations

Hokio Stream - Conductivity

Hokio Stream Sodium Concentrations

Palmerston North

118 Fitzherbert Avenue, Palmerston North 4410 PO Box 13-052, Armagh Christchurch 8141 Tel +64 6 357 4034

Please visit www.stantec.com to learn more about how Stantec design with community in mind.

